Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      The spatial distribution and dispersion of mercury (Hg) is associated with the structural conditions of the environment, primarily land use and vegetation cover. Man-made emissions of the metal from activities such as artisanal and small-scale gold mining (ASGM) can influence this distribution. Forest ecosystems are of particular importance as they constitute one of the most active environments in the biogeochemical cycle of Hg, and understanding these dynamics is essential to better understand its global cycle. In this study, we determined the content of Hg present in different forest strata (soil, leaf litter, herbaceous, underwood/bush, and arboreal), as well as the relationship between the presence of Hg and the landscape heterogeneity, percentage of gold mines, and ground slope. This study was carried out in tropical forest areas of the southern Brazilian Amazon. Accumulation and transport of Hg between forest strata was assessed in order to understand the influence of these forest environments on Hg accumulation in areas where ASGM occurs. We verified that there is a difference in Hg content between forest strata, indicating that atmospheric Hg is accumulated onto the arboreal stratum and transported vertically to strata below the canopy, i.e., underwood/bush and herbaceous, and subsequently accumulated in the leaf litter and transferred to the soil. Leaf litter was the stratum with the highest Hg content, characterized as a receptor for most of the Hg load from the upper strata in the forest. Therefore, it was confirmed that Hg accumulation dynamics are at play between the areas analyzed due to the proximity of ASGMs in the region. This indicates that the conservation of forest areas plays an important role in the process of atmospheric Hg deposition and accumulation, acting as a mercury sink in areas close to man-made emissions.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Akagi, H., & Nishimura, H. (1991). Advances in mercury toxicology, Advances in mercury toxicology. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9.
      Alvares, C. A., Stape, L., Sentelhas, P. C., Gonçalves, J. L. de M., & Sparovek, G. (2014). Koppen’s climate classification map for Brazil 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
      Associação Brasileira de Normas Técnicas, A. (2001). Agregados - Redução da amostra de campo para ensaios de laboratório.
      Ballabio, C., Jiskra, M., Osterwalder, S., Borrelli, P., Montanarella, L., & Panagos, P. (2021). Science of the Total Environment A spatial assessment of mercury content in the European Union topsoil. Science Total Environment 769, 144755. https://doi.org/10.1016/j.scitotenv.2020.144755.
      Barton, K. (2020). MuMIn: Multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn.
      Bishop, K., Shanley, J. B., Riscassi, A., Wit, H. A. De, Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., & Zhu, W. (2020). Science of the Total Environment Recent advances in understanding and measurement of mercury in the environment : Terrestrial Hg cycling Influence on 721. https://doi.org/10.1016/j.scitotenv.2020.137647.
      Camargo, L. (2011). Atlas de Mato Grosso Abordagem socioeconômico-ecológica.
      Carpi, A., Fostier, A. H., Orta, O. R., Carlos, J., & Gittings, M. (2014). Gaseous mercury emissions from soil following forest loss and land use changes : Field experiments in the United States and Brazil. Atmospheric Environment, 96, 423–429. https://doi.org/10.1016/j.atmosenv.2014.08.004. (PMID: 10.1016/j.atmosenv.2014.08.004)
      Casagrande, G. C. R., Franco, D. N. D. M., Moreno, M. I. C., Andrade, E. A. de, Battirola, L. D., de Andrade, R. L. T. (2020). Assessment of atmospheric mercury deposition in the vicinity of artisanal and small-scale gold mines using glycine max as bioindicators. Water, Air, Soil Pollution, 234, 14. https://doi.org/10.1007/s11270-020-04918-y.
      Cizdziel, J. V., Jiang, Y., Nallamothu, D., Brewer, J. S., & Gao, Z. (2019). Atmosphere Air/surface exchange of gaseous elemental mercury at different landscapes in Mississippi , USA 1–15.
      Colica, A., Benvenuti, M., Chiarantini, L., Costagliola, P., Lattanzi, P., Rimondi, V., & Rinaldi, M. (2019). Catena From point source to diffuse source of contaminants: The example of mercury dispersion in the Paglia River (Central Italy). CATENA, 172, 488–500. https://doi.org/10.1016/j.catena.2018.08.043. (PMID: 10.1016/j.catena.2018.08.043)
      Corsini, E. (2018). Zoneamento Socioeconômico Ecológico do Estado de Mato Grosso – ZSEE/MT- Estudo Ambiental. Secretaria de Estado de Planejamento de Mato Grosso, Cuiabá.
      Crespo-lopez, M. E., Augusto-oliveira, M., Lopes-araújo, A., Santos-sacramento, L., Yuki, P., Matos, B. De, Maia, C. S. F., Lima, R. R., & Arrifano, G. P. (2021). Mercury: What can we learn from the Amazon ? 146. https://doi.org/10.1016/j.envint.2020.106223.
      de Souza Azevedo, J., Hortellani, M. A., de Souza Sarkis, J. E. (2019). Organotropism of total mercury (THg) in Cichla pinima, ecological aspects and human consumption in fish from Amazon region, Brazil. Environmental Science Pollution Research, 26, 21363–21370. https://doi.org/10.1007/s11356-019-05303-x. (PMID: 10.1007/s11356-019-05303-x)
      Diringer, S. E., Berky, A. J., Marani, M., Ortiz, E. J., Karatum, O., Plata, D. L., Pan, W. K., & Hsu-Kim, H. (2020). Deforestation due to artisanal and small-scale gold mining exacerbates soil and mercury mobilization in Madre de Dios, Peru. Environmental Science Technology, 54, 286−296. https://pubs.acs.org/doi/10.1021/acs.est.9b06620.
      Du, B., Zhou, J., Zhou, L., Fan, X., & Zhou, J. (2019). Mercury distribution in the foliage and soil pro files of a subtropical forest: Process for mercury retention in soils. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2019.106337. (PMID: 10.1016/j.gexplo.2019.106337)
      Eckley, C. S., Gilmour, C. C., Janssen, S., Luxton, T. P., Randall, P. M., Whalin, L., & Austin, C. (2020). The assessment and remediation of mercury contaminated sites: A review of current approaches. Science Total Environment, 707, 136031. https://doi.org/10.1016/j.scitotenv.2019.136031.
      Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039–1042. https://doi.org/10.1590/S1413-70542011000600001. (PMID: 10.1590/S1413-70542011000600001)
      Figueiredo, B. R., De Campos, A. B., Da Silva, R., & Hoffman, N. C. (2018). Mercury sink in Amazon rainforest: Soil geochemical data from the Tapajos National Forest, Brazil. Environmental Earth Science, 77, 1–7. https://doi.org/10.1007/s12665-018-7471-x. (PMID: 10.1007/s12665-018-7471-x)
      Fostier, A. H., Melendez-Perez, J. J., & Richter, L. (2015). Litter mercury deposition in the Amazonian rainforest. Environmental Pollution, 206, 605–610. https://doi.org/10.1016/j.envpol.2015.08.010. (PMID: 10.1016/j.envpol.2015.08.010)
      Gębka, K., Saniewska, D., & Bełdowska, M. (2020). Mobility of mercury in soil and its transport into the sea. Environmental Science and Pollution Research, 27, 8492–8506. https://doi.org/10.1007/s11356-019-06790-8. (PMID: 10.1007/s11356-019-06790-8)
      Gerson, J. R., Driscoll, C. T., Hsu-Kim, H., & Bernhardt, E. S. (2018). Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elementa Science Anthropocene, 6, 11. https://doi.org/10.1525/elementa.274. (PMID: 10.1525/elementa.274)
      Gerson, J. R., Szponar, N., Zambrano, A. A., Bergquist, B., Broadbent, E., Driscoll, C. T., Erkenswick, G., Evers, D. C., Fernandez, L. E., Hsu-Kim, H., Inga, G., Lansdale, K. N., Marchese, M. J., Martinez, A., Moore, C., Pan, W. K., Purizaca, R. P., Sánchez, V., Silman, M., & Bernhardt, E. S. (2022). Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nature Communications, 13, 559. https://doi.org/10.1038/s41467-022-27997-3. (PMID: 10.1038/s41467-022-27997-3)
      Gfeller, L., Weber, A., Worms, I., Slaveykova, V. I., & Mestrot, A. (2021). Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding – draining cycle. Biogeosciences, 18, 3445–3465. https://doi.org/10.5194/bg-18-3445-2021. (PMID: 10.5194/bg-18-3445-2021)
      Goix, S., Maurice, L., Laffont, L., Rinaldo, R., Lagane, C., Chmeleff, J., Menges, J., & Heimbürger, L. (2019). Chemosphere Quantifying the Impacts of Artisanal Gold Mining on a Tropical River System Using Mercury Isotopes, 219, 684–694. https://doi.org/10.1016/j.chemosphere.2018.12.036. (PMID: 10.1016/j.chemosphere.2018.12.036)
      Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. E. N. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., & Mowat, L. D. (2008). Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science Technology, 42, 8345–8351.
      Gustin, M. S., Bank, M. S., Bishop, K., Bowman, K., Branfireun, B., Chételat, J., Eckley, C. S., Hammerschmidt, C. R., Lamborg, C., Lyman, S., Martínez-Cortizas, A., Sommar, J., Tsui, M. T. K., & Zhang, T. (2020). Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.139619.
      Gworek, B., Dmuchowski, W., & Baczewska-Dąbrowska, A. H. (2020). Mercury in the terrestrial environment: A review. Environmental Science Europe, 32, 128. https://doi.org/10.1186/s12302-020-00401-x.
      Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography, 42, 1648–1657. https://doi.org/10.1111/ecog.04617. (PMID: 10.1111/ecog.04617)
      Instituto Nacional de Pesquisas Espaciais. (2004). Divisão de Geração de Imagens (INPE-DGI). Imagem do estado de Mato Grosso.
      Kumar, B., Smita, K., & Flores, L. C. (2017). Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335–S2342. https://doi.org/10.1016/j.arabjc.2013.08.010. (PMID: 10.1016/j.arabjc.2013.08.010)
      Kütter, V. T. (2014). Inventário do uso e emissões de mercúrio em mineração artesanal de pequena escala de ouro no Brasil (resultados preliminares) Mercury use and emission inventories in artisanal gold mining in Brazil (preliminary results) 1.
      Laacouri, A., Nater, E. A., & Kolka, R. K. (2013). Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A. Environmental Science and Technology, 47, 10462–10470. https://doi.org/10.1021/es401357z. (PMID: 10.1021/es401357z)
      Lacerda Filho, J. V., Abreu Filho, W., Valente, C. R., Oliveira, C. C., & Albuquerque, M. C. (2004). Geologia e recursos minerais do estado do Mato Grosso: texto explicativo do mapa geológico e de recursos minerais do estado do Mato Grosso. Geol. e Recur. minerais do estado do Mato Grosso 252.
      Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition, in: Ambio. Royal Swedish Academy of Sciences, p. 19–32. https://doi.org/10.1579/0044-7447 . 36[19:ASOPAU]2.0.CO;2.
      Liu, Y., Wang, J., Guo, J., Wang, L., & Wu, Q. (2022). Vertical distribution characteristics of soil mercury and its formation mechanism in permafrost regions: A case study of the Qinghai-Tibetan Plateau. Journal of Environmental Sciences, 113, 311–321. https://doi.org/10.1016/j.jes.2021.06.016. (PMID: 10.1016/j.jes.2021.06.016)
      Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., & Zhang, L. (2020). An updated review of atmospheric mercury. Science Total Environment, 707. https://doi.org/10.1016/j.scitotenv.2019.135575.
      Ma, M., Du, H., & Wang, D. (2019). A new perspective is required to understand the role of forest ecosystems in global mercury cycle: A review. Bulletin of Environment Contamination and Toxicology, 102, 650–656. https://doi.org/10.1007/s00128-019-02569-2. (PMID: 10.1007/s00128-019-02569-2)
      Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., & Wei, S. (2016). Mercury dynamics and mass balance in a subtropical forest, southwestern China. Atmospheric Chemistry and Physics, 16, 4529–4537. https://doi.org/10.5194/acp-16-4529-2016. (PMID: 10.5194/acp-16-4529-2016)
      Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., & Wei, S. (2015). Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China. Environmental Science and Pollution Research, 22, 20007–20018. https://doi.org/10.1007/s11356-015-5152-9. (PMID: 10.1007/s11356-015-5152-9)
      Marcelino, A. C. S., Junior, M. F., de, S., Hoegen, T. S., Paula, L. G. P., & de Uliana, E. M. (2019). Características fisiográficas de sub-bacias hidrográficas do rio Peixoto de Azevedo, Mato Grosso, Brasil in: Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto. Santos, p. 611–614.
      Massaro, L., & de Theije, M. (2018). Understanding small-scale gold mining practices: An anthropological study on technological innovation in the Vale do Rio Peixoto (Mato Grosso, Brazil). Journal of Cleaner Production, 204, 618–635. https://doi.org/10.1016/j.jclepro.2018.08.153. (PMID: 10.1016/j.jclepro.2018.08.153)
      Minamata Convention. (2017). Directrices sobre las y las mejores disponibles mejores técnicas prácticas ambientales. UNEP/ Minamata Convention, Ginebra.
      Miserendino, R. A., Bergquist, B. A., Adler, S. E., Guimarães, J. R. D., Lees, P. S. J., Niquen, W., Velasquez-López, P. C., & Veiga, M. M. (2013). Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resources Policy, 38, 713–722. https://doi.org/10.1016/j.resourpol.2013.03.007. (PMID: 10.1016/j.resourpol.2013.03.007)
      Natasha, M. S., Khalid, S., Bibi, I., Bundschuh, J., Niazi, N. K., & Dumat, C. (2020). A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment, 711, 134749.  https://doi.org/10.1016/j.scitotenv.2019.134749. (PMID: 10.1016/j.scitotenv.2019.134749)
      Navrátil, T., Šimeček, M., Shanley, J. B., Rohovec, J., Hojdová, M., & Houška, J. (2017). The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Science of the Total Environment, 586, 1182–1192. https://doi.org/10.1016/j.scitotenv.2017.02.112. (PMID: 10.1016/j.scitotenv.2017.02.112)
      Neteler, M., Bowman, M. H., Landa, M., & Metz, M. (2012). GRASS GIS: A multi-purpose open source GIS. Environmental Modelling Software, 31, 124–130. https://doi.org/10.1016/j.envsoft.2011.11.014. (PMID: 10.1016/j.envsoft.2011.11.014)
      Obrist, D. (2007). Atmospheric mercury pollution due to losses of terrestrial carbon pools ? 119–123. https://doi.org/10.1007/s10533-007-9108-0.
      Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., Battles, J. J., Dail, D. B., Edmonds, R. L., Monson, O. R. K., Ollinger, S. V., Pallardy, S. G., Pregitzer, K. S., & Todd, D. E. (2011). Mercury distribution across 14 U.S. forests. Part I : Spatial patterns of concentrations in biomass, litter, and soils 3974–3981.
      Obrist, D., Pearson, C., Webster, J., Kane, T., Lin, C., Aiken, G. R., & Alpers, C. N. (2016). Science of the Total Environment A synthesis of terrestrial mercury in the western United States : Spatial distribution defined by land cover and plant productivity. Science of the Total Environment, 568, 522–535. https://doi.org/10.1016/j.scitotenv.2015.11.104. (PMID: 10.1016/j.scitotenv.2015.11.104)
      Pecoraro, G. D., Hortellani, M. A., Hagiwara, Y. S., Braga, E. S., Sarkis, J. E., & Azevedo, J. S. (2019). Bioaccumulation of total mercury (THg) in catfish (Siluriformes, Ariidae) with different sexual maturity from Cananéia-Iguape Estuary, SP Brazil. Bulletin Environmental Contamination Toxicology, 102, 175–179. https://doi.org/10.1007/s00128-018-2485-3. (PMID: 10.1007/s00128-018-2485-3)
      Pignati, M. T., Pezzuti, J. C. B., de Souza, L. C., de Lima, M., Pignati, W. A., & Mendes, R. D. A. (2018). Assessment of mercury concentration in turtles (Podocnemis unifilis) in the Xingu River Basin, Brazil. International Journal of Environmental Research and Public Health, 15, 17–21. https://doi.org/10.3390/ijerph15061185. (PMID: 10.3390/ijerph15061185)
      R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/ .
      Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35, 3453–3462. https://doi.org/10.1016/S1352-2310(01)00133-9. (PMID: 10.1016/S1352-2310(01)00133-9)
      Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS, in: Earth Resources Technology Satellite Symposium. Proceedings, NASA, Washington, p. 317.
      Saniewska, D., Be, M., Be, J., Je, A., Saniewski, M., & Falkowska, L. (2014). Mercury loads into the sea associated with extreme flood 191. https://doi.org/10.1016/j.envpol.2014.04.003.
      Seimetz, E. X. (2019). Caracterização geofísica de depósitos auríferos na região de Peixoto de Azevedo. Universidade de Brasília.
      Šípková, A., Száková, J., Hanč, A., & Tlustoš, P. (2016). Mobility of mercury in soil as affected by soil physicochemical properties. Journal of Soils and Sediments, 16, 2234–2241. https://doi.org/10.1007/s11368-016-1420-7. (PMID: 10.1007/s11368-016-1420-7)
      Sommar, J., Osterwalder, S., & Zhu, W. (2020). Science of the Total Environment Recent advances in understanding and measurement of Hg in the environment : Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). Science Total Environment, 721, 137648. https://doi.org/10.1016/j.scitotenv.2020.137648.
      Souza, C. M., Jr., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-filho, P. W. M., Oliveira, S. W. D., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., &  Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sensing, 12, 2735. https://doi.org/10.3390/rs12172735. (PMID: 10.3390/rs12172735)
      St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., Lindberg, S. E., & Dong, W. (2001). Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science and Technology, 35, 3089–3098. https://doi.org/10.1021/es001924p. (PMID: 10.1021/es001924p)
      Sun, T., Ma, M., Wang, X., Wang, Y., Du, H., Xiang, Y., Xu, Q., Xie, Q., & Wang, D. (2019). Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China. Environmental Pollution, 254, 113065. https://doi.org/10.1016/j.envpol.2019.113065.
      Tartu, S., Blévin, P., Bustamante, P., Angelier, F., Bech, C., Bustnes, J. O., Chierici, M., Fransson, A., Gabrielsen, G. W., Goutte, A., Moe, B., Sauser, C., Sire, J., Barbrud, C., & Chastel, O. (2022). Environmental Science and Technology, 2022(56), 2443–2454. https://doi.org/10.1021/acs.est.1c07633. (PMID: 10.1021/acs.est.1c07633)
      UNEP. (2018). Global Mercury Assessment. Geneva.
      Wang, B. Z., Lin, C. J., Yuan, W., & Feng, X. (2016a). Assessment of global mercury deposition through litterfall. Environmental Science and Technology, 50, 8548–8557. https://doi.org/10.1021/acs.est.5b06351. (PMID: 10.1021/acs.est.5b06351)
      Wang, L. C. J., Lu, Z., Zhang, H., Zhang, Y., & Feng, X. (2016). Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems. Journal Geophysical Research Biogeosciences, 121, 2096–2109. https://doi.org/10.1002/2016JG003446. (PMID: 10.1002/2016JG003446)
      Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems - A literature review. Environmental Pollution, 131, 323–336. https://doi.org/10.1016/j.envpol.2004.01.010. (PMID: 10.1016/j.envpol.2004.01.010)
      Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag. (PMID: 10.1007/978-3-319-24277-4)
      WHO. (2019). Environmental Health Criteria 101. In methylmercury; World Health Organization: Geneve, Switzerland.
      Wright, L. P., Zhang, L., & Marsik, F. J. (2016). Overview of mercury dry deposition, litterfall, and throughfall studies 13399–13416. https://doi.org/10.5194/acp-16-13399-2016.
      Yuan, W., Sommar, J., Lin, C., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., & Feng, X. (2019). Stable Isotope Evidence Shows Re-Emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. https://doi.org/10.1021/acs.est.8b04865. (PMID: 10.1021/acs.est.8b04865)
      Yuan, W., Wang, X., Lin, C., Wu, C., Zhang, L., Wang, B., Sommar, J., Lu, Z., & Feng, X. (2020). Stable Mercury Isotope Transition during Postdepositional Decomposition of Biomass in a Forest Ecosystem over Five Centuries. https://doi.org/10.1021/acs.est.0c00950. (PMID: 10.1021/acs.est.0c00950)
      Zhang, H., Yin, R. -S., Feng, X. -B., Sommar, J., Anderson, C. W. N., Sapkota, A., Fu, X. -W., & Larssen, T. (2013). Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures. Science Reports, 3. https://doi.org/10.1038/srep03322.
      Zhang, L., Zhou, P., Cao, S., & Zhao, Y. (2019). Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations : A critical review 15587–15608.
      Zhou, J., Feng, X., Liu, H., Zhang, H., Fu, X., & Bao, Z. (2013). Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China. Atmospheric Environment, 81, 364–372. https://doi.org/10.1016/j.atmosenv.2013.09.010. (PMID: 10.1016/j.atmosenv.2013.09.010)
      Zhou, J., & Obrist, D. (2021). Global Mercury Assimilation by Vegetation. https://doi.org/10.1021/acs.est.1c03530. (PMID: 10.1021/acs.est.1c03530)
      Zhou, J., Wang, Z., Sun, T., Zhang, H., & Zhang, X. (2016). Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires. Environmental Pollution, 212, 188–196. https://doi.org/10.1016/j.envpol.2016.01.003. (PMID: 10.1016/j.envpol.2016.01.003)
      Zhou, J., Du, B., Wang, Z., Zhang, W., Xu, L., Fan, X., Liu, X., & Zhou, J. (2019). Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects. Science of the Total Environment, 647, 932–941. https://doi.org/10.1016/j.scitotenv.2018.08.091. (PMID: 10.1016/j.scitotenv.2018.08.091)
      Zhu, S., & Zhang, Z. (2018). Science of the Total Environment Mercury Transport and Fate Models in Aquatic Systems : A Review and Synthesis, 639, 538–549. https://doi.org/10.1016/j.scitotenv.2018.04.397. (PMID: 10.1016/j.scitotenv.2018.04.397)
    • Contributed Indexing:
      Keywords: ASGM; Accumulation; Environmental contaminants; Hg dispersal; Trace metal
    • الرقم المعرف:
      FXS1BY2PGL (Mercury)
      7440-57-5 (Gold)
      0 (Soil)
    • الموضوع:
      Date Created: 20230317 Date Completed: 20230321 Latest Revision: 20230321
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1007/s10661-023-11063-6
    • الرقم المعرف:
      36928432