Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bacillus Co-culture Inhibits Quorum Sensing in Pseudomonas aeruginosa.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: New York, Springer International.
    • الموضوع:
    • نبذة مختصرة :
      Pseudomonas aeruginosa is a widespread source of hospital-acquired infections and a top priority antibiotic-resistant pathogen as it has developed robust immunity to most traditional antibiotics. Quorum sensing (QS) enables P. aeruginosa to modulate virulence functions and is important for pathogenesis. QS relies on the production and perception of autoinducing chemical signal molecules. Acyl-homoserine lactones are the key autoinducer molecules that mediate P. aeruginosa-associated QS, and N-(3-oxododecanoyl)-L-homoserine lactone (3-O-C12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL) are the two types. This study aimed to identify potential quenching targets of QS pathways that may reduce the chances of resistance developing in P. aeruginosa using co-culture approaches. In co-cultures, Bacillus reduced the production of 3-O-C12-HSL/C4-HSL signal molecules by inactivating acyl- homoserine lactone-based QS to inhibit important virulence factor expression. Moreover, Bacillus is subject to complex crosstalk with other regulatory systems, such as the integrated QS system and the Iqs system. The results showed that blocking one or more QS pathways was insufficient to reduce infection with multidrug resistant P. aeruginosa.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Oliver A, Mulet X, Lópezcausapé et al (2015) The increasing threat of Pseudomonas aeruginosa high risk clones. Drug Resist Update 21(22):41–59. https://doi.org/10.1016/j.drup.2015.08.002. (PMID: 10.1016/j.drup.2015.08.002)
      Li X-F, Shi H-Q, Liang Y, Li J, Jiang B, Song G-B (2022) Interaction of biofilm and efflux pump in clinical isolates of carbapenem resistant P. aeruginosa. Eur Rev Med Pharmacol Sci 26(5):1729–1737. https://doi.org/10.26355/eurrev_202203_28242. (PMID: 10.26355/eurrev_202203_2824235302222)
      Grim CJ, Kozlova EV, Sha J (2013) Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. MBio 4(2):1–13. https://doi.org/10.1128/mBio.00064-13. (PMID: 10.1128/mBio.00064-13)
      Rémy B, Mion S, Plener L et al (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203. https://doi.org/10.3389/fphar.2018.00203. (PMID: 10.3389/fphar.2018.00203295638765845960)
      Castillojuárez I, Maeda T, Mandujanotinoco EA et al (2015) Role of quorum sensing in bacterial infections. World J Clin Cases 3(7):575. https://doi.org/10.12998/wjcc.v3.i7.575. (PMID: 10.12998/wjcc.v3.i7.57526244150)
      Balasubramanian D, Schneper L, Kumari H et al (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41(1):1–20. https://doi.org/10.1093/nar/gks1039. (PMID: 10.1093/nar/gks103923143271)
      Maura D, Hazan R, Kitao T et al (2016) Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator. MvfR Sci Rep 6:34083. https://doi.org/10.1038/srep34083. (PMID: 10.1038/srep3408327678057)
      Kalaiarasan E, Thirumalaswamy K, Harish BN et al (2017) Inhibition of quorum sensing controlled biofilm formation in Pseudomonas aeruginosa by quorum sensing inhibitors. Microb Pathog 111:99–107. https://doi.org/10.1016/j.micpath.2017.08.017. (PMID: 10.1016/j.micpath.2017.08.01728818490)
      Castillo-Juárez I, Maeda T, AyerimMandujano-Tinoco E et al (2015) Role of quorum sensing in bacterial infections. World J Clin Cases 3(7):575–598. https://doi.org/10.12998/wjcc.v3.i7.575. (PMID: 10.12998/wjcc.v3.i7.575262441504517333)
      Simon O (2010) An interdisciplinary study on the mode of action of probiotics in pigs. Anim Feed Sci 19(2):230–243. https://doi.org/10.22358/jafs/66284/2010. (PMID: 10.22358/jafs/66284/2010)
      Ditu LM, Chifiriuc MC, Bezirtzoglou E, Voltsi C, Bleotu C, Pelinescu D, Mihaescu G, Lazar V (2011) Modulation of virulence and antibiotic susceptibility of enteropathogenic Escherichia coli strains by Enterococcus faecium probiotic strain culture fractions. Anaerobe 17(6):448–451. https://doi.org/10.1016/j.anaerobe.2011.05.019. (PMID: 10.1016/j.anaerobe.2011.05.01921723403)
      Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserinelactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002. (PMID: 10.1128/AEM.68.4.1754-1759.200211916693123891)
      Musthafa KS, Saroja V, Pandian SK, Ravi AV (2011) Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). Biosci 36:55–67. https://doi.org/10.1007/s12038-011-90117. (PMID: 10.1007/s12038-011-90117)
      Raafat MM, Ali-Tammam M, Ali AE et al (2019) Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa. Infect Drug Resist 12:1583–1596. https://doi.org/10.2147/IDR.S182889. (PMID: 10.2147/IDR.S182889312397336559722)
      De BC, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP (2014) Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Bio-chem 40:921–971. https://doi.org/10.1007/s10695-013-9897-0. (PMID: 10.1007/s10695-013-9897-0)
      Thirabunyanon M, Thongwittaya N (2012) Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella enteritidis infection. Res Vet Sci 93(1):74–81. https://doi.org/10.1016/j.rvsc.2011.08.008. (PMID: 10.1016/j.rvsc.2011.08.00821907374)
      Liu CH, Chiu CH, Wang SW, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33(4):699–706. https://doi.org/10.1016/j.fsi.2012.06.012. (PMID: 10.1016/j.fsi.2012.06.01222796423)
      Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp. QSI-1 protectzebrafish (Daniorerio) from Aeromonashydrophila infection. Sci Rep 4:5446. https://doi.org/10.1038/srep05446. (PMID: 10.1038/srep05446249624414069686)
      Wang M, Schaefer AL, Dandekar AA et al (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci USA 112(7):2187–2191. https://doi.org/10.1073/pnas.1500704112. (PMID: 10.1073/pnas.1500704112256464544343120)
      Lee J, Wu J, Deng Y et al (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9(5):339–343. https://doi.org/10.1038/nchembio.1225. (PMID: 10.1038/nchembio.122523542643)
      Liu RF, Huang CL, Feng H (2015) Salt stress represses production of extracellular proteases in Bacillus pumilus. Genet Mol Res 14(2):4939–4948. https://doi.org/10.4238/2015.May.11.27. (PMID: 10.4238/2015.May.11.2725966269)
      Chugani S, Greenberg EP (2014) An evolving perspective on the pseudomonas aeruginosa orphan quorum sensing regulator QscR. Front Cell Infect Microbiol 4:152. https://doi.org/10.3389/fcimb.2014.00152. (PMID: 10.3389/fcimb.2014.00152253895234211393)
      Lee J, Wu J, Deng Y et al (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9(5):339. https://doi.org/10.1038/nchembio.1225. (PMID: 10.1038/nchembio.122523542643)
      Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Prot Cell 6(1):26. https://doi.org/10.1007/s13238-014-0100-x. (PMID: 10.1007/s13238-014-0100-x)
    • الرقم المعرف:
      0 (N-butyrylhomoserine lactone)
      0 (Acyl-Butyrolactones)
      0 (Anti-Bacterial Agents)
    • الموضوع:
      Date Created: 20230304 Date Completed: 20230307 Latest Revision: 20230307
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s00284-023-03218-y
    • الرقم المعرف:
      36870004