Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Environmental Application of Graphene and Its Forms for Wastewater Treatment: a Sustainable Solution Toward Improved Public Health.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Jha AK;Jha AK; Chakraborty S; Chakraborty S
  • المصدر:
    Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2023 Oct; Vol. 195 (10), pp. 6392-6420. Date of Electronic Publication: 2023 Mar 03.
  • نوع النشر :
    Journal Article; Review
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Clifton, N.J. : Humana Press, c1981-
    • الموضوع:
    • نبذة مختصرة :
      Public health is seriously jeopardized in developing countries due to poor sanitation and the presence of persistent pollutants in natural water bodies. Open dumping, wastewater discharge without proper treatment and atmospheric fallout of the organic and inorganic pollutants are the main causes behind the poor condition. Some of the pollutants pose a greater risk due to their toxicity and persistence. Such a class of pollutants are known as chemical contaminants of emerging concern (CECC), including antibiotics and drug residues, endocrine disruptors, pesticides and micro- and nano-plastics. Conventional treatment methods cannot treat them properly and are often associated with several disadvantages. However, the chronological development of techniques and materials for their treatment has exhibited graphene as an efficient candidate for environmental remediation. This current review considers the various graphene-based materials, their properties, advancement in synthesis methods with time and their detailed application in removing dyes, antibiotics and heavy metals. It has been discussed how graphene and its derivatives exhibit unique electronic, mechanical, structural and thermal properties. In this paper, the mechanism of adsorption and degradation using these graphene-based materials has also been discussed vividly. In addition to this, a bibliographic analysis was performed to identify the trend of research related to graphene and its derivatives in the adsorption and degradation of pollutants round the globe reflected by the publications. Therefore, this review can be instrumental in understanding the fact that further development of graphene-based materials and their mass production can provide a very effective and economical wastewater treatment method.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Shetti, N. P., Malode, S. J., Malladi, R. S., Nargund, S. L., Shukla, S. S., & Aminabhavi, T. M. (2019). Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode. Microchemical Journal, 146, 387–392. https://doi.org/10.1016/j.microc.2019.01.033. (PMID: 10.1016/j.microc.2019.01.033)
      Govindan, K., Suresh, A. K., Sakthivel, T., Murugesan, K., Mohan, R., Gunasekaran, V., & Jang, A. (2019). Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere, 237, 124479. https://doi.org/10.1016/j.chemosphere.2019.124479. (PMID: 10.1016/j.chemosphere.2019.12447931400739)
      El-Shafai, N. M., El-Khouly, M. E., El-Kemary, M., Ramadan, M. S., Derbalah, A. S., & Masoud, M. S. (2019). Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. Journal of Industrial and Engineering Chemistry, 69, 315–323. https://doi.org/10.1016/j.jiec.2018.09.045. (PMID: 10.1016/j.jiec.2018.09.045)
      Fang, F., Wang, Y., Zhu, Z., Yao, Y., Lin, Y., & Wang, J. (2019). Distribution characteristics and influencing factors of heavy metals in scalp hair of Huainan urban residents. Environmental Monitoring and Assessment, 191(7), 443. https://doi.org/10.1007/s10661-019-7592-z. (PMID: 10.1007/s10661-019-7592-z31203464)
      Lei, Y., Chen, F., Luo, Y., Zhang, L., Saeedi-Jurkuyeh, A., Jafari, A. J., … Wang, H. (2020). Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review. Chemical Engineering Journal, 146, 124611. https://doi.org/10.1016/j.cej.2020.124611.
      Venkatesh, G., Geerthana, M., Prabhu, S., Ramesh, R., & Prabu, K. M. (2020). Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3 nanocomposite for aqueous organic pollutant degradation. Optik, 206, 164055. https://doi.org/10.1016/j.ijleo.2019.164055. (PMID: 10.1016/j.ijleo.2019.164055)
      Jha, A. K., & Chakraborty, S. (2020). Photocatalytic degradation of Congo red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Science and Technology, 82(11), 2491–2502. https://doi.org/10.2166/wst.2020.517. (PMID: 10.2166/wst.2020.51733339802)
      Shaikh, W. A., Chakraborty, S., & Ul Islam, R. (2018). UV-assisted photo-catalytic degradation of anionic dye (Congo red) using biosynthesized silver nanoparticles: A green catalysis. Desalination and Water Treatment, 130, 232–242. https://doi.org/10.5004/dwt.2018.23004. (PMID: 10.5004/dwt.2018.23004)
      Truong, N. T., Thi, H. P. N., Ninh, H. D., Phung, X. T., Van Tran, C., Nguyen, T. T., … La, D. D. (2020). Facile fabrication of graphene@Fe-Ti binary oxide nanocomposite from ilmenite ore: an effective photocatalyst for dye degradation under visible light irradiation. Journal of Water Process Engineering, 37, 101474. https://doi.org/10.1016/j.jwpe.2020.101474.
      Deji, R., Verma, A., Choudhary, B. C., & Sharma, R. K. (2022). New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. Journal of Molecular Graphics and Modelling, 111, 108109. https://doi.org/10.1016/j.jmgm.2021.108109. (PMID: 10.1016/j.jmgm.2021.108109)
      Vasseghian, Y., Dragoi, E.-N., Almomani, F., Le, V. T., & Berkani, M. (2021). Graphene-based membrane techniques for heavy metal removal: a critical review. Environmental Technology & Innovation, 24, 101863. https://doi.org/10.1016/j.eti.2021.101863. (PMID: 10.1016/j.eti.2021.101863)
      Zhang, Y., Duan, X., Wang, J., Wang, C., Wang, J., Wang, J., & Wang, J. (2018). Natural graphene microsheets/sulfur as Li-S battery cathode towards >99% coulombic efficiency of long cycles. Journal of Power Sources, 376, 131–137. https://doi.org/10.1016/j.jpowsour.2017.11.061. (PMID: 10.1016/j.jpowsour.2017.11.061)
      Kim, M.-G., Park, J., Shon, Y., Shim, G., & Oh, Y.-K. (2014). Pharmaceutical applications of graphene-based nanosheets. Current Pharmaceutical Biotechnology, 14(12), 1016–1026. https://doi.org/10.2174/1389201015666140113113222. (PMID: 10.2174/138920101566614011311322224433501)
      Lin, L., Wang, H., & Xu, P. (2017). Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chemical Engineering Journal, 310, 389–398. https://doi.org/10.1016/j.cej.2016.04.024. (PMID: 10.1016/j.cej.2016.04.024)
      Modi, A., & Bellare, J. (2020). Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Separation and Purification Technology, 249, 117160. https://doi.org/10.1016/j.seppur.2020.117160. (PMID: 10.1016/j.seppur.2020.117160)
      Maruthupandy, M., Qin, P., Muneeswaran, T., Rajivgandhi, G., Quero, F., & Song, J.-M. (2020). Graphene-zinc oxide nanocomposites (G-ZnO NCs): synthesis, characterization and their photocatalytic degradation of dye molecules. Materials Science and Engineering: B, 254, 114516. https://doi.org/10.1016/j.mseb.2020.114516. (PMID: 10.1016/j.mseb.2020.114516)
      Li, Y., Zhang, S., Han, Y., Cheng, S., Hu, W., Han, J., & Li, Y. (2019). Heterogeneous electrocatalytic degradation of ciprofloxacin by ternary Ce3ZrFe4O14-x/CF composite cathode. Catalysis Today, 327, 116–125. https://doi.org/10.1016/j.cattod.2018.05.043. (PMID: 10.1016/j.cattod.2018.05.043)
      Munikrishnappa, C., Kumar, S., Shivakumara, S., Mohan Rao, G., & Munichandraiah, N. (2019). The TiO2-graphene oxide-Hemin ternary hybrid composite material as an efficient heterogeneous catalyst for the degradation of organic contaminants. Journal of Science: Advanced Materials and Devices, 4(1), 80–88. https://doi.org/10.1016/j.jsamd.2018.12.003. (PMID: 10.1016/j.jsamd.2018.12.003)
      Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — a review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/j.jiec.2018.05.028. (PMID: 10.1016/j.jiec.2018.05.028)
      Liu, X., Ma, R., Wang, X., Ma, Y., Yang, Y., Zhuang, L., … Wang, X. (2019). Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environmental Pollution, 252, 62–73. https://doi.org/10.1016/j.envpol.2019.05.050.
      Makal, P., & Das, D. (2019). Superior photocatalytic dye degradation under visible light by reduced graphene oxide laminated TiO2-B nanowire composite. Journal of Environmental Chemical Engineering, 7(5), 103358. https://doi.org/10.1016/j.jece.2019.103358. (PMID: 10.1016/j.jece.2019.103358)
      Adly, M. S., El-Dafrawy, S. M., & El-Hakam, S. A. (2019). Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes. Journal of Materials Research and Technology, 8(6), 5610–5622. https://doi.org/10.1016/j.jmrt.2019.09.029. (PMID: 10.1016/j.jmrt.2019.09.029)
      Gogoi, J., Choudhury, A. D., & Chowdhury, D. (2019). Graphene oxide clay nanocomposite as an efficient photo-catalyst for degradation of cationic dye. Materials Chemistry and Physics, 232, 438–445. https://doi.org/10.1016/j.matchemphys.2019.05.010. (PMID: 10.1016/j.matchemphys.2019.05.010)
      Lee, G., Chu, K. H., Al-Hamadani, Y. A. J., Park, C. M., Jang, M., Heo, J., … Yoon, Y. (2018). Fabrication of graphene-oxide/β-Bi2O3/TiO2/Bi2Ti2O7 heterojuncted nanocomposite and its sonocatalytic degradation for selected pharmaceuticals. Chemosphere, 212, 723–733. https://doi.org/10.1016/j.chemosphere.2018.08.137.
      Mukherjee, R., Bhunia, P., & De, S. (2016). Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chemical Engineering Journal, 292, 284–297. https://doi.org/10.1016/j.cej.2016.02.015. (PMID: 10.1016/j.cej.2016.02.015)
      Moradi, S., Sobhgol, S. A., Hayati, F., Isari, A. A., Kakavandi, B., Bashardoust, P., & Anvaripour, B. (2020). Performance and reaction mechanism of MgO/ZnO/graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Separation and Purification Technology, 251, 117373. https://doi.org/10.1016/j.seppur.2020.117373. (PMID: 10.1016/j.seppur.2020.117373)
      Lei, Y., Chen, F., Luo, Y., & Zhang, L. (2014). Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions. Chemical Physics Letters, 593, 122–127. https://doi.org/10.1016/j.cplett.2013.12.066. (PMID: 10.1016/j.cplett.2013.12.066)
      Alegaonkar, A. P., Pardeshi, S. K., & Alegaonkar, P. S. (2020). Tellurium-reduced graphene oxide two-dimensional (2D) architecture for efficient photo-catalytic effluent: solution for industrial water waste. Diamond and Related Materials, 108, 107994. https://doi.org/10.1016/j.diamond.2020.107994. (PMID: 10.1016/j.diamond.2020.107994)
      Bandehali, S., Moghadassi, A., Parvizian, F., Zhang, Y., Hosseini, S. M., & Shen, J. (2020). New mixed matrix PEI nanofiltration membrane decorated by glycidyl-POSS functionalized graphene oxide nanoplates with enhanced separation and antifouling behaviour: heavy metal ions removal. Separation and Purification Technology, 242, 116745. https://doi.org/10.1016/j.seppur.2020.116745. (PMID: 10.1016/j.seppur.2020.116745)
      Zhou, A., Bai, J., Hong, W., & Bai, H. (2022). Electrochemically reduced graphene oxide: preparation, composites, and applications. Carbon, 191, 301–332. https://doi.org/10.1016/j.carbon.2022.01.056. (PMID: 10.1016/j.carbon.2022.01.056)
      Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/10.1016/j.compositesb.2018.01.013. (PMID: 10.1016/j.compositesb.2018.01.013)
      Suresh, R., Mangalaraja, R. V., Mansilla, H. D., Santander, P., & Yáñez, J. (2020). Reduced graphene oxide-based photocatalysis (pp. 145–166). https://doi.org/10.1007/978-3-030-15608-4_6.
      Zhao, C., Song, X., Liu, Y., Fu, Y., Ye, L., Wang, N., … Liu, J. (2020). Synthesis of graphene quantum dots and their applications in drug delivery. Journal of Nanobiotechnology, 18(1), 142. https://doi.org/10.1186/s12951-020-00698-z.
      Ali, A., Shoeb, M., Li, Y., Li, B., & Khan, M. A. (2021). Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation. Journal of Molecular Liquids, 324, 114696. https://doi.org/10.1016/j.molliq.2020.114696. (PMID: 10.1016/j.molliq.2020.114696)
      Minale, M., Guadie, A., Li, Y., Meng, Y., Wang, X., & Zhao, J. (2021). Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: adsorption behavior and oxidative degradation pathways. Chemosphere, 280, 130926. https://doi.org/10.1016/j.chemosphere.2021.130926. (PMID: 10.1016/j.chemosphere.2021.13092634162108)
      Yu, H., Hong, H.-J., Kim, S. M., Ko, H. C., & Jeong, H. S. (2020). Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydrate Polymers, 240, 116348. https://doi.org/10.1016/j.carbpol.2020.116348. (PMID: 10.1016/j.carbpol.2020.11634832475599)
      Yoon, H. W., Cho, Y. H., & Park, H. B. (2016). Graphene-based membranes: Status and prospects. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2060), 20150024. https://doi.org/10.1098/rsta.2015.0024. (PMID: 10.1098/rsta.2015.0024)
      Koosha, N., Karimi-Sabet, J., Moosavian, M. A., & Amini, Y. (2021). Improvement of synthesized graphene structure through various solvent liquids at low temperatures by chemical vapor deposition method. Materials Science and Engineering: B, 274, 115458. https://doi.org/10.1016/j.mseb.2021.115458. (PMID: 10.1016/j.mseb.2021.115458)
      Sali, S., Mackey, H. R., & Abdala, A. A. (2019). Effect of graphene oxide synthesis method on properties and performance of polysulfone-graphene oxide mixed matrix membranes. Nanomaterials. https://doi.org/10.3390/nano9050769. (PMID: 10.3390/nano9050769311091356566723)
      Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., & Gong, J. R. (2011). Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society, 133(28), 10878–10884. https://doi.org/10.1021/ja2025454. (PMID: 10.1021/ja202545421639097)
      Niu, F., & Qiu, J. (2014). Network structure, distribution and the growth of Chinese international research collaboration. Scientometrics, 98(2), 1221–1233. https://doi.org/10.1007/s11192-013-1170-x. (PMID: 10.1007/s11192-013-1170-x)
      Liu, Q., Shen, J., Yang, X., Zhang, T., & Tang, H. (2018). 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 232, 562–573. https://doi.org/10.1016/j.apcatb.2018.03.100. (PMID: 10.1016/j.apcatb.2018.03.100)
      Song, X., Huang, D., Zhang, L., Wang, H., Wang, L., & Bian, Z. (2020). Electrochemical degradation of the antibiotic chloramphenicol via the combined reduction-oxidation process with Cu-Ni/graphene cathode. Electrochimica Acta, 330, 135187. https://doi.org/10.1016/j.electacta.2019.135187.
      El-Shafai, N. M., Abdelfatah, M. M., El-Khouly, M. E., El-Mehasseb, I. M., El-Shaer, A., Ramadan, M. S., … El-Kemary, M. A. (2020). Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): electrochemical properties and applications for removal heavy metals, pesticide and solar cell. Applied Surface Science, 506, 144896. https://doi.org/10.1016/j.apsusc.2019.144896.
      Mandal, B., Panda, J., Paul, P. K., Sarkar, R., & Tudu, B. (2020). MnFe2O4 decorated reduced graphene oxide heterostructures: nanophotocatalyst for methylene blue dye degradation. Vacuum, 173, 109150. https://doi.org/10.1016/j.vacuum.2019.109150. (PMID: 10.1016/j.vacuum.2019.109150)
      Barik, B., Kumar, A., Nayak, P. S., Achary, L. S. K., Rout, L., & Dash, P. (2020). Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Materials Chemistry and Physics, 239, 122028. https://doi.org/10.1016/j.matchemphys.2019.122028. (PMID: 10.1016/j.matchemphys.2019.122028)
      Ren, F., Zhu, W., Zhao, J., Liu, H., Zhang, X., Zhang, H., … Wang, B. (2020). Nitrogen-doped graphene oxide aerogel anchored with spinel CoFe2O4 nanoparticles for rapid degradation of tetracycline. Separation and Purification Technology, 241, 116690. https://doi.org/10.1016/j.seppur.2020.116690.
      Wu, Z., Liang, Y., Yuan, X., Zou, D., Fang, J., Jiang, L., … Xiao, Z. (2020). MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chemical Engineering Journal, 394, 124921. https://doi.org/10.1016/j.cej.2020.124921.
      Beura, R., Rajendran, S., Gracia Pinilla, M. A., & Thangadurai, P. (2019). Enhanced photo-induced catalytic activity of Cu ion doped ZnO - graphene ternary nanocomposite for degrading organic dyes. Journal of Water Process Engineering, 32, 100966. https://doi.org/10.1016/j.jwpe.2019.100966. (PMID: 10.1016/j.jwpe.2019.100966)
      Baynosa, M. L., Mady, A. H., Nguyen, V. Q., Kumar, D. R., Sayed, M. S., Tuma, D., & Shim, J.-J. (2020). Eco-friendly synthesis of recyclable mesoporous zinc ferrite@reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation. Journal of Colloid and Interface Science, 561, 459–469. https://doi.org/10.1016/j.jcis.2019.11.018. (PMID: 10.1016/j.jcis.2019.11.01831753506)
      El-Hout, S. I., El-Sheikh, S. M., Gaber, A., Shawky, A., & Ahmed, A. I. (2020). Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles. Journal of Alloys and Compounds, 849, 156573. https://doi.org/10.1016/j.jallcom.2020.156573. (PMID: 10.1016/j.jallcom.2020.156573)
      Kumar, S., Kaushik, R. D., & Purohit, L. P. (2021). Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye. Journal of Molecular Liquids, 327, 114814. https://doi.org/10.1016/j.molliq.2020.114814. (PMID: 10.1016/j.molliq.2020.114814)
      Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: spatial distribution, influencing factors, and potential health risks. Science of The Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367. (PMID: 10.1016/j.scitotenv.2020.14236733032138)
      Bharath, G., Alhseinat, E., Ponpandian, N., Khan, M. A., Siddiqui, M. R., Ahmed, F., & Alsharaeh, E. H. (2017). Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Separation and Purification Technology, 188, 206–218. https://doi.org/10.1016/j.seppur.2017.07.024. (PMID: 10.1016/j.seppur.2017.07.024)
      Zhang, K., Zheng, X., Li, H., & Zhao, Z. (2020). Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in Northwest China. Soil and Sediment Contamination: An International Journal, 29(5), 481–502. https://doi.org/10.1080/15320383.2020.1746737. (PMID: 10.1080/15320383.2020.1746737)
      Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2013). Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Surface Science, 275, 361–368. https://doi.org/10.1016/j.apsusc.2012.11.157. (PMID: 10.1016/j.apsusc.2012.11.157)
      Jun, B.-M., Elanchezhiyan, S. S. D., Yoon, Y., Wang, D., Kim, S., Muthu Prabhu, S., & Park, C. M. (2020). Accelerated photocatalytic degradation of organic pollutants over carbonate-rich lanthanum-substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate. Chemical Engineering Journal, 393, 124733. https://doi.org/10.1016/j.cej.2020.124733. (PMID: 10.1016/j.cej.2020.124733)
      Shende, T. P., Bhanvase, B. A., Rathod, A. P., Pinjari, D. V., & Sonawane, S. H. (2018). Sonochemical synthesis of graphene-Ce-TiO2 and graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrasonics Sonochemistry, 41, 582–589. https://doi.org/10.1016/j.ultsonch.2017.10.024. (PMID: 10.1016/j.ultsonch.2017.10.02429137789)
      May-Lozano, M., Lopez-Medina, R., Mendoza Escamilla, V., Rivadeneyra-Romero, G., Alonzo-Garcia, A., Morales-Mora, M., … Martinez-Degadillo, S. A. (2020). Intensification of the orange II and black 5 degradation by sonophotocatalysis using Ag-graphene oxide/TiO2 systems. Chemical Engineering and Processing - Process Intensification, 158, 108175. https://doi.org/10.1016/j.cep.2020.108175.
      Muninathan, S., & Arumugam, S. (2021). Enhanced photocatalytic activities of NiS decorated reduced graphene oxide for hydrogen production and toxic dye degradation under visible light irradiation. International Journal of Hydrogen Energy, 46(9), 6532–6546. https://doi.org/10.1016/j.ijhydene.2020.11.178. (PMID: 10.1016/j.ijhydene.2020.11.178)
      Yin, J., Gao, D., Zhu, X., Liu, X., & Li, H. (2021). One-pot synthesis of 3D porous Bi7O9I3/N-doped graphene aerogel with enhanced photocatalytic activity for organic dye degradation in wastewater. Ceramics International, 47(14), 19556–19566. https://doi.org/10.1016/j.ceramint.2021.03.293. (PMID: 10.1016/j.ceramint.2021.03.293)
      Anuma, S., Mishra, P., & Bhat, B. R. (2021). Polypyrrole functionalized cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. Journal of Hazardous Materials, 416, 125929. https://doi.org/10.1016/j.jhazmat.2021.125929. (PMID: 10.1016/j.jhazmat.2021.12592934492859)
      Nawaz, M., Khan, A. A., Hussain, A., Jang, J., Jung, H.-Y., & Lee, D. S. (2020). Reduced graphene oxide−TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere, 261, 127702. https://doi.org/10.1016/j.chemosphere.2020.127702. (PMID: 10.1016/j.chemosphere.2020.12770232750619)
      Saleh, R., & Taufik, A. (2019). Ultraviolet-light-assisted heterogeneous Fenton reaction of Ag-Fe3O4/graphene composites for the degradation of organic dyes. Journal of Environmental Chemical Engineering, 7(1), 102895. https://doi.org/10.1016/j.jece.2019.102895. (PMID: 10.1016/j.jece.2019.102895)
      Kang, J., Zhang, H., Duan, X., Sun, H., Tan, X., & Wang, S. (2019). Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics. Journal of Cleaner Production, 218, 202–211. https://doi.org/10.1016/j.jclepro.2019.01.323. (PMID: 10.1016/j.jclepro.2019.01.323)
      Park, C. M., Heo, J., Wang, D., Su, C., & Yoon, Y. (2018). Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Applied Catalysis B: Environmental, 225, 91–99. https://doi.org/10.1016/j.apcatb.2017.11.058. (PMID: 10.1016/j.apcatb.2017.11.05832704206)
      Zhang, R., Ma, Y., Lan, W., Sameen, D. E., Ahmed, S., Dai, J., … Liu, Y. (2021). Enhanced photocatalytic degradation of organic dyes by ultrasonic-assisted electrospray TiO2/graphene oxide on polyacrylonitrile/β-cyclodextrin nanofibrous membranes. Ultrasonics Sonochemistry, 70, 105343. https://doi.org/10.1016/j.ultsonch.2020.105343.
      Jiang, Q., Zhang, Y., Jiang, S., Wang, Y., Li, H., Han, W., … Hu, Y. (2021). Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation. Chemical Engineering Journal, 403, 126309. https://doi.org/10.1016/j.cej.2020.126309.
      Guo, H., Jiang, N., Wang, H., Lu, N., Shang, K., Li, J., & Wu, Y. (2019). Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water. Chemical Engineering Journal, 372, 226–240. https://doi.org/10.1016/j.cej.2019.04.119. (PMID: 10.1016/j.cej.2019.04.119)
      Xu, M., Wang, Y., Ha, E., Zhang, H., & Li, C. (2021). Reduced graphene oxide/Bi4O5Br 2 nanocomposite with synergetic effects on improving adsorption and photocatalytic activity for the degradation of antibiotics. Chemosphere, 265, 129013. https://doi.org/10.1016/j.chemosphere.2020.129013. (PMID: 10.1016/j.chemosphere.2020.12901333310314)
      Mou, Z., Zhang, H., Liu, Z., Sun, J., & Zhu, M. (2019). Ultrathin BiOCl/nitrogen-doped graphene quantum dots composites with strong adsorption and effective photocatalytic activity for the degradation of antibiotic ciprofloxacin. Applied Surface Science, 496, 143655. https://doi.org/10.1016/j.apsusc.2019.143655. (PMID: 10.1016/j.apsusc.2019.143655)
      Anirudhan, T. S., Deepa, J. R., & Nair, A. S. (2017). Fabrication of chemically modified graphene oxide/nano hydroxyapatite composite for adsorption and subsequent photocatalytic degradation of aureomycine hydrochloride. Journal of Industrial and Engineering Chemistry, 47, 415–430. https://doi.org/10.1016/j.jiec.2016.12.014. (PMID: 10.1016/j.jiec.2016.12.014)
      Priya, B., Shandilya, P., Raizada, P., Thakur, P., Singh, N., & Singh, P. (2016). Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. Journal of Molecular Catalysis A: Chemical, 423, 400–413. https://doi.org/10.1016/j.molcata.2016.07.043. (PMID: 10.1016/j.molcata.2016.07.043)
      Yao, N., Li, C., Yu, J., Xu, Q., Wei, S., Tian, Z., … Shen, J. (2020). Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Separation and Purification Technology, 236, 116278. https://doi.org/10.1016/j.seppur.2019.116278.
      Sadeghi, M. H., Tofighy, M. A., & Mohammadi, T. (2020). One-dimensional graphene for efficient aqueous heavy metal adsorption: rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere, 253, 126647. https://doi.org/10.1016/j.chemosphere.2020.126647. (PMID: 10.1016/j.chemosphere.2020.12664732276119)
      Azamat, J., Sattary, B. S., Khataee, A., & Joo, S. W. (2015). Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: insights from simulations. Journal of Molecular Graphics and Modelling, 61, 13–20. https://doi.org/10.1016/j.jmgm.2015.06.012. (PMID: 10.1016/j.jmgm.2015.06.01226186492)
      Abdi, G., Alizadeh, A., Zinadini, S., & Moradi, G. (2018). Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. Journal of Membrane Science, 552, 326–335. https://doi.org/10.1016/j.memsci.2018.02.018. (PMID: 10.1016/j.memsci.2018.02.018)
      He, C.-T., Zheng, X.-B., Yan, X., Zheng, J., Wang, M.-H., Tan, X., … Mai, B.-X. (2017). Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: spatial characteristics and implications for human exposure. Ecotoxicology and Environmental Safety, 140, 109–115. https://doi.org/10.1016/j.ecoenv.2017.02.041.
      Zhan, W., Gao, L., Fu, X., Siyal, S. H., Sui, G., & Yang, X. (2019). Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Applied Surface Science, 467–468, 1122–1133. https://doi.org/10.1016/j.apsusc.2018.10.248. (PMID: 10.1016/j.apsusc.2018.10.248)
      Zeng, T., Yu, Y., Li, Z., Zuo, J., Kuai, Z., Jin, Y., … Peng, C. (2019). 3D MnO2 nanotubes@reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Materials Chemistry and Physics, 231, 105–108. https://doi.org/10.1016/j.matchemphys.2019.04.019.
      Fang, Q., Zhou, X., Deng, W., & Liu, Z. (2017). Hydroxyl-containing organic molecule induced self-assembly of porous graphene monoliths with high structural stability and recycle performance for heavy metal removal. Chemical Engineering Journal, 308, 1001–1009. https://doi.org/10.1016/j.cej.2016.09.139. (PMID: 10.1016/j.cej.2016.09.139)
      Peng, C., Kuai, Z., Lian, S., Li, X., Jiang, D., Yang, Y., … Li, L. (2021). Reversible photoregulation of morphological structure for porous coumarin-graphene composite and the removal of heavy metal ions. Applied Surface Science, 546, 149065. https://doi.org/10.1016/j.apsusc.2021.149065.
      Ain, Q.-U.-, Farooq, M. U., & Jalees, M. I. (2020). Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. Journal of Water Process Engineering, 33, 101044. https://doi.org/10.1016/j.jwpe.2019.101044.
      Majdoub, M., Amedlous, A., Anfar, Z., Jada, A., & El Alem, N. (2021). Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: towards drinking water. Journal of Colloid and Interface Science, 589, 511–524. https://doi.org/10.1016/j.jcis.2021.01.029. (PMID: 10.1016/j.jcis.2021.01.02933486286)
      Chen, H., Meng, Y., Jia, S., Hua, W., Cheng, Y., Lu, J., & Wang, H. (2020). Graphene oxide modified waste newspaper for removal of heavy metal ions and its application in industrial wastewater. Materials Chemistry and Physics, 244, 122692. https://doi.org/10.1016/j.matchemphys.2020.122692. (PMID: 10.1016/j.matchemphys.2020.122692)
      Hoai, N. T., Sang, N. N., & Hoang, T. D. (2017). Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal. Materials Science and Engineering: B, 216, 10–15. https://doi.org/10.1016/j.mseb.2016.06.007. (PMID: 10.1016/j.mseb.2016.06.007)
      Andrade, M. B., Santos, T. R. T., Guerra, A. C. S., Silva, M. F., Demiti, G. M. M., & Bergamasco, R. (2022). Evaluation of magnetic nano adsorbent produced from graphene oxide with iron and cobalt nanoparticles for caffeine removal from aqueous medium. Chemical Engineering and Processing - Process Intensification, 170, 108694. https://doi.org/10.1016/j.cep.2021.108694. (PMID: 10.1016/j.cep.2021.108694)
      Tao, T., Li, G., He, Y., & Duan, P. (2019). Hybrid carbon nanotubes/graphene/nickel fluffy spheres for fast magnetic separation and efficient removal of organic solvents from water. Materials Letters, 254, 440–443. https://doi.org/10.1016/j.matlet.2019.06.104. (PMID: 10.1016/j.matlet.2019.06.104)
      Lee, J.-H., Velmurugan, P., Ravi, A. V., & Oh, B.-T. (2020). Green and hydrothermal assembly of reduced graphene oxide (rGO)-coated ZnO and Fe hybrid nanocomposite for the removal of nitrate and phosphate. Environmental Chemistry and Ecotoxicology, 2, 141–149. https://doi.org/10.1016/j.enceco.2020.08.001. (PMID: 10.1016/j.enceco.2020.08.001)
      Mehmeti, V., Halili, J., & Berisha, A. (2022). Which is better for lindane pesticide adsorption, graphene or graphene oxide? An experimental and DFT study. Journal of Molecular Liquids, 347, 118345. https://doi.org/10.1016/j.molliq.2021.118345. (PMID: 10.1016/j.molliq.2021.118345)
      Liu, G., Li, L., Xu, D., Huang, X., Xu, X., Zheng, S., … Lin, H. (2017). Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydrate Polymers, 175, 584–591. https://doi.org/10.1016/j.carbpol.2017.06.074.
      Fang, Z., Gao, Y., Bolan, N., Shaheen, S. M., Xu, S., Wu, X., … Wang, H. (2020). Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review. Chemical Engineering Journal, 390, 124611. https://doi.org/10.1016/j.cej.2020.124611.
      Saeedi-Jurkuyeh, A., Jafari, A. J., Kalantary, R. R., & Esrafili, A. (2020). A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive and Functional Polymers, 146, 104397. https://doi.org/10.1016/j.reactfunctpolym.2019.104397. (PMID: 10.1016/j.reactfunctpolym.2019.104397)
      Sebuso, D. P., Kuvarega, A. T., Lefatshe, K., King’ondu, C. K., Numan, N., Maaza, M., & Muiva, C. M. (2022). Corn husk multilayered graphene/ZnO nanocomposite materials with enhanced photocatalytic activity for organic dyes and doxycycline degradation. Materials Research Bulletin, 151, 111800. https://doi.org/10.1016/j.materresbull.2022.111800. (PMID: 10.1016/j.materresbull.2022.111800)
      Mittal, S. K., Goyal, D., Chauhan, A., & Dang, R. K. (2020). Graphene nanoparticles: the super material of future. Materials Today: Proceedings, 28, 1290–1294. https://doi.org/10.1016/j.matpr.2020.04.260. (PMID: 10.1016/j.matpr.2020.04.260)
    • Grant Information:
      GO/Estd./PhD/2018-19/2184 Birla Institute of Technology
    • Contributed Indexing:
      Keywords: Adsorption; Antibiotics; Degradation; Dyes; Graphene; Heavy metal
    • الرقم المعرف:
      0 (Wastewater)
      7782-42-5 (Graphite)
      0 (Water Pollutants, Chemical)
      0 (Environmental Pollutants)
      0 (Metals, Heavy)
    • الموضوع:
      Date Created: 20230303 Date Completed: 20230921 Latest Revision: 20230921
    • الموضوع:
      20230921
    • الرقم المعرف:
      10.1007/s12010-023-04381-5
    • الرقم المعرف:
      36867385