نبذة مختصرة : Background: Masitinib is an orally administered tyrosine kinase inhibitor that targets activated cells of the neuroimmune system (mast cells and microglia). Study AB09004 evaluated masitinib as an adjunct to cholinesterase inhibitor and/or memantine in patients with mild-to-moderate dementia due to probable Alzheimer's disease (AD).
Methods: Study AB09004 was a randomized, double-blind, two parallel-group (four-arm), placebo-controlled trial. Patients aged ≥50 years, with clinical diagnosis of mild-to-moderate probable AD and a Mini-Mental State Examination (MMSE) score of 12-25 were randomized (1:1) to receive masitinib 4.5 mg/kg/day (administered orally as two intakes) or placebo. A second, independent parallel group (distinct for statistical analysis and control arm), randomized patients (2:1) to masitinib at an initial dose of 4.5 mg/kg/day for 12 weeks that was then titrated to 6.0 mg/kg/day, or equivalent placebo. Multiple primary outcomes (each tested at a significance level of 2.5%) were least-squares mean change from baseline to week 24 in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-cog), or the Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory scale (ADCS-ADL). Safety for each masitinib dose level was compared against a pooled placebo population.
Results: Masitinib (4.5 mg/kg/day) (n=182) showed significant benefit over placebo (n=176) according to the primary endpoint of ADAS-cog, -1.46 (95% CI [-2.46, -0.45]) (representing an overall improvement in cognition) versus 0.69 (95% CI [-0.36, 1.75]) (representing increased cognitive deterioration), respectively, with a significant between-group difference of -2.15 (97.5% CI [-3.48, -0.81]); p<0.001. For the ADCS-ADL primary endpoint, the between-group difference was 1.82 (97.5% CI [-0.15, 3.79]); p=0.038 (i.e., 1.01 (95% CI [-0.48, 2.50]) (representing an overall functional improvement) versus -0.81 (95% CI [-2.36, 0.74]) (representing increased functional deterioration), respectively). Safety was consistent with masitinib's known profile (maculo-papular rash, neutropenia, hypoalbuminemia). Efficacy results from the independent parallel group of titrated masitinib 6.0 mg/kg/day versus placebo (n=186 and 91 patients, respectively) were inconclusive and no new safety signal was observed.
Conclusions: Masitinib (4.5 mg/kg/day) may benefit people with mild-to-moderate AD. A confirmatory study has been initiated to substantiate these data.
Trial Registration: EudraCT: 2010-021218-50.
Clinicaltrials: gov : NCT01872598.
(© 2023. The Author(s).)
References: Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577–90. (PMID: 33667416835430010.1016/S0140-6736(20)32205-4)
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10(9):698–712. (PMID: 2185278810.1038/nrd3505)
Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37. (PMID: 25024750409569610.1186/alzrt269)
Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312–39. (PMID: 31564456677804210.1016/j.cell.2019.09.001)
Sandhu JK, Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases. Int J Mol Sci. 2021;22(3):1093. (PMID: 33499208786598210.3390/ijms22031093)
Klegeris A. Microglial targets for effective therapies of Alzheimer’s disease. Front Drug Chem Clin Res. 2020;3:1–4.
Tchessalova D, Posillico CK, Tronson NC. Neuroimmune activation drives multiple brain states. Front Syst Neurosci. 2018;12:39. (PMID: 30210310612334910.3389/fnsys.2018.00039)
Li JW, Zong Y, Cao XP, Tan L, Tan L. Microglial priming in Alzheimer's disease. Ann Transl Med. 2018;6(10):176. (PMID: 29951498599453010.21037/atm.2018.04.22)
Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4:e7258. (PMID: 19789626274628110.1371/journal.pone.0007258)
Vermersch P, Brieva-Ruiz L, Fox RJ, et al. Efficacy and Safety of Masitinib in Progressive Forms of Multiple Sclerosis: A Randomized, Phase 3, Clinical Trial. Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1148. Published 2022 Feb 21. https://doi.org/10.1212/NXI.0000000000001148 .
Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1-2):5–14. (PMID: 3128061910.1080/21678421.2019.1632346)
Trias E, King PH, Si Y, et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight. 2018;3(19):e123249. (PMID: 30282815623748410.1172/jci.insight.123249)
Shahidehpour RK, Higdon RE, Crawford NG, et al. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging. 2021;99:19–27. (PMID: 33422891829393010.1016/j.neurobiolaging.2020.12.003)
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. (PMID: 33239064768998310.1186/s40035-020-00221-2)
Schwabe T, Srinivasan K, Rhinn H. Shifting paradigms: the central role of microglia in Alzheimer's disease. Neurobiol Dis. 2020;143:104962. (PMID: 3253515210.1016/j.nbd.2020.104962)
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. (PMID: 3331867610.1038/s41582-020-00435-y)
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic targeting strategies for early- to late-staged Alzheimer's disease. Int J Mol Sci. 2020;21(24):9591. (PMID: 33339351776670910.3390/ijms21249591)
Streit WJ, Khoshbouei H, Bechmann I. The role of microglia in sporadic Alzheimer's disease. J Alzheimers Dis. 2020. https://doi.org/10.3233/JAD-201248 .
Fani Maleki A, Rivest S. Innate immune cells: monocytes, monocyte-derived macrophages and microglia as therapeutic targets for Alzheimer's disease and multiple sclerosis. Front Cell Neurosci. 2019;13:355. (PMID: 31427930669026910.3389/fncel.2019.00355)
Kempuraj D, Mentor S, Thangavel R, et al. Mast cells in stress, pain, blood-brain barrier, Neuroinflammation and Alzheimer's disease. Front Cell Neurosci. 2019;13:54. (PMID: 30837843638967510.3389/fncel.2019.00054)
Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171 Published 2019 Apr 30. (PMID: 31133804652469410.3389/fncel.2019.00171)
Nordengen K, Kirsebom BE, Henjum K, et al. Glial activation and inflammation along the Alzheimer's disease continuum. J Neuroinflammation. 2019;16(1):46. (PMID: 30791945638326810.1186/s12974-019-1399-2)
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. J Cell Biol. 2018;217(2):459–72. (PMID: 29196460580081710.1083/jcb.201709069)
Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. (PMID: 29618972587167610.3389/fncel.2018.00072)
Shaik-Dasthagirisaheb YB, Conti P. The role of mast cells in Alzheimer's disease. Adv. Clin Exp Med. 2016;25(4):781–7.
Folch J, Petrov D, Ettcheto M, et al. Masitinib for the treatment of mild to moderate Alzheimer's disease. Expert Rev Neurother. 2015;15(6):587–96. (PMID: 2596165510.1586/14737175.2015.1045419)
Li T, Martin E, Abada YS, et al. Effects of chronic Masitinib treatment in APPswe/PSEN1dE9 transgenic mice modeling Alzheimer's disease. J Alzheimers Dis. 2020;76(4):1339–45. (PMID: 3262340110.3233/JAD-200466)
Piette F, Belmin J, Vincent H, et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimers Res Ther. 2011;3(2):16. (PMID: 21504563322627710.1186/alzrt75)
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050. (PMID: 32695874)
Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141:1356–64. (PMID: 649677910.1176/ajp.141.11.1356)
Galasko D, Bennett D, Sano M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease: the Alzheimer’s disease cooperative study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S33–9. (PMID: 923695010.1097/00002093-199700112-00005)
Schneider LS, Olin JT, Doody RS, et al. Validity and reliability of the Alzheimer’s disease cooperative study—clinical global impression of change. Alzheimer Dis Assoc Disord. 1997;11(suppl 2):S22–32. (PMID: 923694910.1097/00002093-199700112-00004)
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. (PMID: 120220410.1016/0022-3956(75)90026-6)
Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4. (PMID: 823297210.1212/WNL.43.11.2412-a)
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, D.C.: American Psychiatric Association; 2000.
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–44. (PMID: 661084110.1212/WNL.34.7.939)
Taljaard M, Donner A, Klar N. Imputation strategies for missing continuous outcomes in cluster randomized trials. Biom J. 2008;50(3):329–45. (PMID: 1853712610.1002/bimj.200710423)
Kenward M. Controlled multiple imputation methods for sensitivity analyses in longitudinal clinical trials with dropout and protocol deviation. Clin Invest. 2015;5:311–20. https://doi.org/10.4155/cli.14.132 . (PMID: 10.4155/cli.14.132)
Molinuevo JL, Frölich L, Grossberg GT, et al. Responder analysis of a randomized comparison of the 13.3 mg/24 h and 9.5 mg/24 h rivastigmine patch. Alzheimers Res Ther. 2015;7(1):9. (PMID: 25755685435345310.1186/s13195-014-0088-8)
Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–47. (PMID: 27371494497066410.1212/WNL.0000000000002923)
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29. (PMID: 2484986210.1016/S1474-4422(14)70090-0)
Oremus M. Does the evidence say a 4-point change in ADAS-cog score is clinically significant? Alzheimers Dement. 2014;10(3):416–7. (PMID: 2463056710.1016/j.jalz.2013.12.017)
Rockwood K, Fay S, Gorman M, Carver D, Graham JE. The clinical meaningfulness of ADAS-cog changes in Alzheimer's disease patients treated with donepezil in an open-label trial. BMC Neurol. 2007;7:26 Published 2007 Aug 30. (PMID: 17760991203458510.1186/1471-2377-7-26)
Vellas B, Andrieu S, Sampaio C, Coley N, Wilcock G, European Task Force Group. Endpoints for trials in Alzheimer's disease: a European task force consensus. Lancet Neurol. 2008;7(5):436–50. (PMID: 1842015710.1016/S1474-4422(08)70087-5)
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6(6):CD001190 Published 2018 Jun 18. (PMID: 29923184)
Birks JS, Chong LY, Grimley EJ. Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev. 2015;9(9):CD001191. (PMID: 26393402)
Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev. 2006;2006(1):CD005593 Published 2006 Jan 25. (PMID: 164375329006343)
No Comments.