Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Deep Learning With Chest Radiographs for Making Prognoses in Patients With COVID-19: Retrospective Cohort Study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: JMIR Publications Country of Publication: Canada NLM ID: 100959882 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-8871 (Electronic) Linking ISSN: 14388871 NLM ISO Abbreviation: J Med Internet Res Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2011- > : Toronto : JMIR Publications
      Original Publication: [Pittsburgh, PA? : s.n., 1999-
    • الموضوع:
    • نبذة مختصرة :
      Background: An artificial intelligence (AI) model using chest radiography (CXR) may provide good performance in making prognoses for COVID-19.
      Objective: We aimed to develop and validate a prediction model using CXR based on an AI model and clinical variables to predict clinical outcomes in patients with COVID-19.
      Methods: This retrospective longitudinal study included patients hospitalized for COVID-19 at multiple COVID-19 medical centers between February 2020 and October 2020. Patients at Boramae Medical Center were randomly classified into training, validation, and internal testing sets (at a ratio of 8:1:1, respectively). An AI model using initial CXR images as input, a logistic regression model using clinical information, and a combined model using the output of the AI model (as CXR score) and clinical information were developed and trained to predict hospital length of stay (LOS) ≤2 weeks, need for oxygen supplementation, and acute respiratory distress syndrome (ARDS). The models were externally validated in the Korean Imaging Cohort of COVID-19 data set for discrimination and calibration.
      Results: The AI model using CXR and the logistic regression model using clinical variables were suboptimal to predict hospital LOS ≤2 weeks or the need for oxygen supplementation but performed acceptably in the prediction of ARDS (AI model area under the curve [AUC] 0.782, 95% CI 0.720-0.845; logistic regression model AUC 0.878, 95% CI 0.838-0.919). The combined model performed better in predicting the need for oxygen supplementation (AUC 0.704, 95% CI 0.646-0.762) and ARDS (AUC 0.890, 95% CI 0.853-0.928) compared to the CXR score alone. Both the AI and combined models showed good calibration for predicting ARDS (P=.079 and P=.859).
      Conclusions: The combined prediction model, comprising the CXR score and clinical information, was externally validated as having acceptable performance in predicting severe illness and excellent performance in predicting ARDS in patients with COVID-19.
      (©Hyun Woo Lee, Hyun Jun Yang, Hyungjin Kim, Ue-Hwan Kim, Dong Hyun Kim, Soon Ho Yoon, Soo-Youn Ham, Bo Da Nam, Kum Ju Chae, Dabee Lee, Jin Young Yoo, So Hyeon Bak, Jin Young Kim, Jin Hwan Kim, Ki Beom Kim, Jung Im Jung, Jae-Kwang Lim, Jong Eun Lee, Myung Jin Chung, Young Kyung Lee, Young Seon Kim, Sang Min Lee, Woocheol Kwon, Chang Min Park, Yun-Hyeon Kim, Yeon Joo Jeong, Kwang Nam Jin, Jin Mo Goo. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 16.02.2023.)
    • Comments:
      Erratum in: J Med Internet Res. 2023 Aug 23;25:e51951. (PMID: 37611252)
    • References:
      Ann Transl Med. 2020 Feb;8(4):145. (PMID: 32175437)
      Sci Rep. 2021 Mar 31;11(1):7310. (PMID: 33790365)
      Tuberc Respir Dis (Seoul). 2021 Jul;84(3):217-225. (PMID: 34078038)
      JAMA Netw Open. 2019 Mar 1;2(3):e190204. (PMID: 30821827)
      Front Med (Lausanne). 2021 Sep 30;8:704256. (PMID: 34660623)
      Lancet Digit Health. 2021 May;3(5):e286-e294. (PMID: 33773969)
      Ann Intensive Care. 2020 Mar 18;10(1):33. (PMID: 32189136)
      J Biomed Inform. 2017 Dec;76:9-18. (PMID: 29079501)
      Eur Respir J. 2021 Sep 9;58(3):. (PMID: 33574070)
      N Engl J Med. 2020 Nov 5;383(19):1813-1826. (PMID: 32445440)
      PLoS One. 2021 Jan 14;16(1):e0245518. (PMID: 33444415)
      N Engl J Med. 2021 Feb 25;384(8):693-704. (PMID: 32678530)
      Korean J Intern Med. 2021 Jan;36(1):1-10. (PMID: 32972121)
      J Thorac Oncol. 2010 Sep;5(9):1315-6. (PMID: 20736804)
      J Korean Med Sci. 2020 Nov 30;35(46):e413. (PMID: 33258333)
      BMC Infect Dis. 2022 Jul 21;22(1):637. (PMID: 35864468)
      Radiol Med. 2020 Aug;125(8):730-737. (PMID: 32519256)
      NPJ Digit Med. 2022 Jan 14;5(1):5. (PMID: 35031687)
      J Med Internet Res. 2021 Sep 28;23(9):e30157. (PMID: 34449401)
      Thorax. 2021 Jul;76(7):696-703. (PMID: 33692174)
      AJR Am J Roentgenol. 2021 Sep;217(3):623-632. (PMID: 33112201)
      BMJ. 2015 Jan 07;350:g7594. (PMID: 25569120)
      Cureus. 2020 Jul 28;12(7):e9448. (PMID: 32864270)
      BMJ. 2020 Apr 7;369:m1328. (PMID: 32265220)
      N Engl J Med. 2020 Dec 17;383(25):2451-2460. (PMID: 32412710)
      J Am Coll Emerg Physicians Open. 2020 Aug 25;1(6):1364-1373. (PMID: 32838390)
      Nat Commun. 2020 Oct 2;11(1):4968. (PMID: 33009413)
      Expert Rev Respir Med. 2020 Nov;14(11):1149-1163. (PMID: 32734777)
      Clin Med (Lond). 2020 May 1;:. (PMID: 32357975)
      Lancet Respir Med. 2021 Aug;9(8):933-936. (PMID: 33915103)
      Biometrics. 1988 Sep;44(3):837-45. (PMID: 3203132)
      Eur Radiol. 2021 Jun;31(6):4016-4022. (PMID: 33263159)
    • Contributed Indexing:
      Keywords: AI model; COVID-19; artificial intelligence; clinical outcome; deep learning; machine learning; medical imaging; prediction model; prognosis; radiography, thoracic
    • الرقم المعرف:
      S88TT14065 (Oxygen)
    • الموضوع:
      Date Created: 20230216 Date Completed: 20230222 Latest Revision: 20230825
    • الموضوع:
      20240829
    • الرقم المعرف:
      PMC9937110
    • الرقم المعرف:
      10.2196/42717
    • الرقم المعرف:
      36795468