Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Acute intranasal treatment with nerve growth factor limits the onset of traumatic brain injury in young rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
    • بيانات النشر:
      Publication: London : Wiley
      Original Publication: London, Macmillian Journals Ltd.
    • الموضوع:
    • نبذة مختصرة :
      Background and Purpose: Traumatic brain injury (TBI) comprises a primary injury directly induced by impact, which progresses into a secondary injury leading to neuroinflammation, reactive astrogliosis, and cognitive and motor damage. To date, treatment of TBI consists solely of palliative therapies that do not prevent and/or limit the outcomes of secondary damage and only stabilize the deficits. The neurotrophin, nerve growth factor (NGF), delivered to the brain parenchyma following intranasal application, could be a useful means of limiting or improving the outcomes of the secondary injury, as suggested by pre-clinical and clinical data.
      Experimental Approach: We evaluated the effect of acute intranasal treatment of young (20-postnatal day) rats, with NGF in a TBI model (weight drop/close head), aggravated by hypoxic complications. Immediately after the trauma, rats were intranasally treated with human recombinant NGF (50 μg·kg -1 ), and motor behavioural test, morphometric and biochemical assays were carried out 24 h later.
      Key Results: Acute intranasal NGF prevented the onset of TBI-induced motor disabilities, and decreased reactive astrogliosis, microglial activation and IL-1β content, which after TBI develops to the same extent in the impact zone and the hypothalamus.
      Conclusion and Implications: Intranasal application of NGF was effective in decreasing the motor dysfunction and neuroinflammation in the brain of young rats in our model of TBI. This work forms an initial pre-clinical evaluation of the potential of early intranasal NGF treatment in preventing and limiting the disabling outcomes of TBI, a clinical condition that remains one of the unsolved problems of paediatric neurology.
      (© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
    • References:
      Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., … Waldman, S. A. (2021). The concise guide to pharmacology 2021/22: Catalytic receptors. British Journal of Pharmacology, 178(S1), S264-S312. https://doi.org/10.1111/bph.15541.
      Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., Ahlers-Dannen, K. E., … Zolghadri, Y. (2021). The concise guide to pharmacology 2021/22: Introduction and other protein targets. British Journal of Pharmacology, 178(S1), S1-S26. https://doi.org/10.1111/bph.15537.
      Arciniegas, D. B. (2003). The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Current Psychiatry Reports, 5(5), 391-399. https://doi.org/10.1007/s11920-003-0074-5.
      Barcelona, P. F., Sitaras, N., Galan, A., Esquiva, G., Jmaeff, S., Jian, Y., Sarunic, M. V., Cuenca, N., Sapieha, P., & Saragovi, H. U. (2016). P75NTR and its ligand ProNGF activate paracrine mechanisms etiological to the vascular, inflammatory, and neurodegenerative pathologies of diabetic retinopathy. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(34), 8826-8841. https://doi.org/10.1523/JNEUROSCI.4278-15.2016.
      Bramlett, H. M., Dietrich, W. D., & Green, E. J. (1999). Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. Journal of Neurotrauma, 16(11), 1035-1047. https://doi.org/10.1089/neu.1999.16.1035.
      Chen, X. Q., Fawcett, J. R., Rahman, Y. E., Ala, T. A., & Frey, I. W. (1998). Delivery of nerve growth factor to the brain via the olfactory pathway. Journal of Alzheimer's Disease, 1(1), 35-44. https://doi.org/10.3233/JAD-1998-1102.
      Cheng, Y.-Y., Zhao, H.-K., Chen, L.-W., Yao, X.-Y., Wang, Y.-L., Huang, Z.-W., Li, G.-P., Wang, Z., & Chen, B.-Y. (2020). Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neuroscience Research, 157, 34-43. https://doi.org/10.1016/j.neures.2019.07.007.
      Chiaretti, A., Conti, G., Falsini, B., Buonsenso, D., Crasti, M., Manni, L., Soligo, M., Fantacci, C., Genovese, O., Calcagni, M. L., Di Giuda, D., Mattoli, M. V., Cocciolillo, F., Ferrara, P., Ruggiero, A., Staccioli, S., Colafati, G. S., & Riccardi, R. (2017). Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Injury, 31(11), 1538-1547. https://doi.org/10.1080/02699052.2017.1376760.
      Clark, D. P. Q., Perreau, V. M., Shultz, S. R., Brady, R. D., Lei, E., Dixit, S., Taylor, J. M., Beart, P. M., & Boon, W. C. (2019). Inflammation in traumatic brain injury: Roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochemical Research, 44(6), 1410-1424. https://doi.org/10.1007/s11064-019-02721-8.
      Clinical Trials Register 2019-002282-35/IT. (2019). https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-002282-35/IT.
      Cragnolini, A. B., Volosin, M., Huang, Y., & Friedman, W. J. (2012). Nerve growth factor induces cell cycle arrest of astrocytes. Developmental Neurobiology, 72(6), 766-776. https://doi.org/10.1002/dneu.20981.
      Ding, Y., Yao, B., Lai, Q., & McAllister, J. P. (2001). Impaired motor learning and diffuse axonal damage in motor and visual systems of the rat following traumatic brain injury. Neurological Research, 23(2-3), 193-202. https://doi.org/10.1179/016164101101198334.
      Dolle, J. P., Rezvan, A., Allen, F. D., Lazarovici, P., & Lelkes, P. I. (2005). Nerve growth factor-induced migration of endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 315(3), 1220-1227. https://doi.org/10.1124/jpet.105.093252.
      Emanueli, C., Salis, M. B., Pinna, A., Graiani, G., Manni, L., & Madeddu, P. (2002). Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation, 106(17), 2257-2262. https://doi.org/10.1161/01.CIR.0000033971.56802.C5.
      Farina, L., Minnone, G., Alivernini, S., Caiello, I., MacDonald, L., Soligo, M., Manni, L., Tolusso, B., Coppola, S., Zara, E., Conti, L. A., Aquilani, A., Magni-Manzoni, S., Kurowska-Stolarska, M., Gremese, E., De Benedetti, F., & Bracci-Laudiero, L. (2022). Pro nerve growth factor and its receptor p75NTR activate inflammatory responses in synovial fibroblasts: A novel targetable mechanism in arthritis. Frontiers in Immunology, 13, 1-13. https://doi.org/10.3389/fimmu.2022.818630.
      Foda, M. A. A.-E., & Marmarou, A. (1994). A new model of diffuse brain injury in rats: Part II: Morphological characterization. Journal of Neurosurgery, 80(2), 301-313. https://doi.org/10.3171/jns.1994.80.2.0301.
      Gasco, V., Cambria, V., Bioletto, F., Ghigo, E., & Grottoli, S. (2021). Traumatic brain injury as frequent cause of hypopituitarism and growth hormone deficiency: Epidemiology, diagnosis, and treatment. Frontiers in Endocrinology, 12, 634415. https://doi.org/10.3389/fendo.2021.634415.
      Graiani, G., Emanueli, C., Desortes, E., Van Linthout, S., Pinna, A., Figueroa, C. D., Manni, L., & Madeddu, P. (2004). Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of type 1 diabetic mice. Diabetologia, 47(6), 1047-1054. https://doi.org/10.1007/s00125-004-1414-7.
      Holtzman, D. M., Kilbridge, J., Li, Y., Cunningham, E. T., Lenn, N. J., Clary, D. O., Reichardt, L. F., & Mobley, W. C. (1995). TrkA expression in the CNS: Evidence for the existence of several novel NGF-responsive CNS neurons. The Journal of Neuroscience, 15(2), 1567-1576. https://doi.org/10.1523/JNEUROSCI.15-02-01567.1995.
      Karve, I. P., Taylor, J. M., & Crack, P. J. (2016). The contribution of astrocytes and microglia to traumatic brain injury. British Journal of Pharmacology, 173(4), 692-702. https://doi.org/10.1111/bph.13125.
      Kasturi, B. S., & Stein, D. G. (2009). Traumatic brain injury causes long-term reduction in serum growth hormone and persistent Astrocytosis in the Cortico-Hypothalamo-pituitary Axis of adult male rats. Journal of Neurotrauma, 26(8), 1315-1324. https://doi.org/10.1089/neu.2008.0751.
      Kochanek, P. M., Wallisch, J. S., Bayir, H., & Clark, R. S. B. (2017). Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Child's Nervous System, 33(10), 1693-1701. https://doi.org/10.1007/s00381-017-3474-2.
      Kupferschmidt, D. A., Juczewski, K., Cui, G., Johnson, K. A., & Lovinger, D. M. (2017). Parallel but dissociable processing in discrete corticostriatal inputs encodes skill learning. Neuron, 96(2), 476-489.e5. https://doi.org/10.1016/j.neuron.2017.09.040.
      Ladak, A. A., Enam, S. A., & Ibrahim, M. T. (2019). A review of the molecular mechanisms of traumatic brain injury. World Neurosurgery, 131, 126-132. https://doi.org/10.1016/j.wneu.2019.07.039.
      Lochhead, J. J., & Davis, T. P. (2019). Perivascular and Perineural pathways involved in brain delivery and distribution of drugs after intranasal administration. Pharmaceutics, 11(11), 598. https://doi.org/10.3390/pharmaceutics11110598.
      Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews, 64(7), 614-628. https://doi.org/10.1016/j.addr.2011.11.002.
      Luo, J., Yang, Y., Zhang, T., Su, Z., Yu, D., Lin, Q., Chen, H., Zhang, Q., Xiang, Q., Xue, W., Ge, R., & Huang, Y. (2018). Nasal delivery of nerve growth factor rescue hypogonadism by up-regulating GnRH and testosterone in aging male mice. eBioMedicine, 35, 295-306. https://doi.org/10.1016/j.ebiom.2018.08.021.
      Lv, Q., Fan, X., Xu, G., Liu, Q., Tian, L., Cai, X., Sun, W., Wang, X., Cai, Q., Bao, Y., Zhou, L., Zhang, Y., Ge, L., Guo, R., & Liu, X. (2013). Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Research, 1493, 80-89. https://doi.org/10.1016/j.brainres.2012.11.028.
      Majdan, M., Melichova, J., Plancikova, D., Sivco, P., Maas, A. I. R., Feigin, V. L., Polinder, S., & Haagsma, J. A. (2022). Burden of traumatic brain injuries in children and adolescents in Europe: Hospital discharges, deaths and years of life lost. Children, 9(1), 105. https://doi.org/10.3390/children9010105.
      Mancini, A., Ghiglieri, V., Parnetti, L., Calabresi, P., & Di Filippo, M. (2021). Neuro-immune cross-talk in the striatum: From basal ganglia physiology to circuit dysfunction. Frontiers in Immunology, 12, 644294. https://doi.org/10.3389/fimmu.2021.644294.
      Manni, L., Conti, G., Chiaretti, A., & Soligo, M. (2021a). Intranasal delivery of nerve growth factor in neurodegenerative diseases and Neurotrauma. Frontiers in Pharmacology, 12, 3261. https://doi.org/10.3389/fphar.2021.754502.
      Matsushita, Y., Bramlett, H. M., Alonso, O., & Dietrich, W. D. (2001). Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Critical Care Medicine, 29(11), 2060-2066. https://doi.org/10.1097/00003246-200111000-00004.
      Mira, R. G., Lira, M., & Cerpa, W. (2021). Traumatic brain injury: Mechanisms of glial response. Frontiers in Physiology, 12, 740939. https://doi.org/10.3389/fphys.2021.740939.
      Molaie, A. M., & Maguire, J. (2018). Neuroendocrine abnormalities following traumatic brain injury: An important contributor to neuropsychiatric sequelae. Frontiers in Endocrinology, 9, 176. https://doi.org/10.3389/fendo.2018.00176.
      Moppett, I. K. (2007). Traumatic brain injury: Assessment, resuscitation and early management. British Journal of Anaesthesia, 99(1), 18-31. https://doi.org/10.1093/bja/aem128.
      Mychasiuk, R., Farran, A., Angoa-Perez, M., Briggs, D., Kuhn, D., & Esser, M. J. (2014). A novel model of mild traumatic brain injury for juvenile rats. Journal of Visualized Experiments, 94, 1-7. https://doi.org/10.3791/51820.
      Nag, S., Eskandarian, M. R., Davis, J., & Eubanks, J. H. (2002). Differential expression of vascular endothelial growth factor-a (VEGF-A) and VEGF-B after brain injury. Journal of Neuropathology & Experimental Neurology, 61(9), 778-788. https://doi.org/10.1093/jnen/61.9.778.
      Ogunshola, O. O., Stewart, W. B., Mihalcik, V., Solli, T., Madri, J. A., & Ment, L. R. (2000). Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Research. Developmental Brain Research, 119(1), 139-153. https://doi.org/10.1016/s0165-3806(99)00125-x.
      Pepeu, G., & Grazia Giovannini, M. (2017). The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Research, 1670, 173-184. https://doi.org/10.1016/j.brainres.2017.06.023.
      Pöyhönen, S., Er, S., Domanskyi, A., & Airavaara, M. (2019). Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Frontiers in Physiology, 10, 486-505. https://doi.org/10.3389/fphys.2019.00486.
      Rizzi, C., Tiberi, A., Giustizieri, M., Marrone, M. C., Gobbo, F., Carucci, N. M., Meli, G., Arisi, I., D'Onofrio, M., Marinelli, S., Capsoni, S., & Cattaneo, A. (2018). NGF steers microglia toward a neuroprotective phenotype. Glia, 66(7), 1395-1416. https://doi.org/10.1002/glia.23312.
      Rowe, R. K., Rumney, B. M., May, H. G., Permana, P., Adelson, P. D., Harman, S. M., Lifshitz, J., & Thomas, T. C. (2016). Diffuse traumatic brain injury affects chronic corticosterone function in the rat. Endocrine Connections, 5(4), 152-166. https://doi.org/10.1530/EC-16-0031.
      Russell, K. L., Kutchko, K. M., Fowler, S. C., Berman, N. E. J., & Levant, B. (2011). Sensorimotor behavioral tests for use in a juvenile rat model of traumatic BRAIN injury: Assessment of sex differences. Journal of Neuroscience Methods, 199(2), 214-222. https://doi.org/10.1016/j.jneumeth.2011.05.008.
      Shin, S. S., & Dixon, C. E. (2015). Alterations in cholinergic pathways and therapeutic strategies targeting cholinergic system after traumatic brain injury. Journal of Neurotrauma, 32(19), 1429-1440. https://doi.org/10.1089/neu.2014.3445.
      Silver, J. K., & Lux, W. E. (1994). Early onset dystonia following traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 75(8), 885-888. https://doi.org/10.1016/0003-9993(94)90113-9.
      Sofroniew, M. V. (2015). Astrogliosis. Cold Spring Harbor Perspectives in Biology, 7(2), a020420. https://doi.org/10.1101/cshperspect.a020420.
      Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7-35. https://doi.org/10.1007/s00401-009-0619-8.
      Soligo, M., Protto, V., Florenzano, F., Bracci-Laudiero, L., De Benedetti, F., Chiaretti, A., & Manni, L. (2015). The mature/pro nerve growth factor ratio is decreased in the brain of diabetic rats: Analysis by ELISA methods. Brain Research, 1624, 455-468. https://doi.org/10.1016/j.brainres.2015.08.005.
      Steininger, T. L., Wainer, B. H., Klein, R., Barbacid, M., & Palfrey, H. C. (1993). High-affinity nerve growth factor receptor (Trk) immunoreactivity is localized in cholinergic neurons of the basal forebrain and striatum in the adult rat brain. Brain Research, 612(1-2), 330-335. https://doi.org/10.1016/0006-8993(93)91681-h.
      Thelin, E. P., Zeiler, F. A., Ercole, A., Mondello, S., Büki, A., Bellander, B.-M., Helmy, A., Menon, D. K., & Nelson, D. W. (2017). Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: A systematic review. Frontiers in Neurology, 8, 300. https://doi.org/10.3389/fneur.2017.00300.
      Thorne, R. G., & Frey, W. H. (2001). Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clinical Pharmacokinetics, 40(12), 907-946. https://doi.org/10.2165/00003088-200140120-00003.
      Tian, L., Guo, R., Yue, X., Lv, Q., Ye, X., Wang, Z., Chen, Z., Wu, B., Xu, G., & Liu, X. (2012). Intranasal administration of nerve growth factor ameliorate beta-amyloid deposition after traumatic brain injury in rats. Brain Research, 1440, 47-55. https://doi.org/10.1016/j.brainres.2011.12.059.
      Vaka, S. R., Sammeta, S. M., Day, L. B., & Murthy, S. N. (2009). Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. Journal of Pharmaceutical Sciences, 98(10), 3640-3646. https://doi.org/10.1002/jps.21674.
      Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews. Neuroscience, 14(2), 128-142. https://doi.org/10.1038/nrn3407.
      Yalcin-Cakmakli, G., Rose, S. J., Villalba, R. M., Williams, L., Jinnah, H. A., Hess, E. J., & Smith, Y. (2018). Striatal cholinergic interneurons in a Knock-in mouse model of L-DOPA-responsive dystonia. Frontiers in Systems Neuroscience, 12, 28. https://doi.org/10.3389/fnsys.2018.00028.
      Yan, E. B., Hellewell, S. C., Bellander, B.-M., Agyapomaa, D. A., & Morganti-Kossmann, M. C. (2011). Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. Journal of Neuroinflammation, 8(1), 147. https://doi.org/10.1186/1742-2094-8-147.
      Yan, E. B., Satgunaseelan, L., Paul, E., Bye, N., Nguyen, P., Agyapomaa, D., Kossmann, T., Rosenfeld, J. V., & Morganti-Kossmann, M. C. (2014). Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. Journal of Neurotrauma, 31(7), 618-629. https://doi.org/10.1089/neu.2013.3087.
      Zhu, W., Chen, L., Wu, Z., Li, W., Liu, X., Wang, Y., Guo, M., Ito, Y., Wang, L., Zhang, P., & Wang, H. (2022). Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomaterialia, 150, 67-82. https://doi.org/10.1016/j.actbio.2022.07.018.
    • Contributed Indexing:
      Keywords: intranasal delivery; microglia; motor dysfunctions; nerve growth factor; paediatric rat; reactive astrogliosis; traumatic brain injury
    • الرقم المعرف:
      9061-61-4 (Nerve Growth Factor)
    • الموضوع:
      Date Created: 20230213 Date Completed: 20230707 Latest Revision: 20230718
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1111/bph.16056
    • الرقم المعرف:
      36780920