Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Chu S;Chu S; Letcher RJ; Letcher RJ
  • المصدر:
    Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2023 Mar; Vol. 415 (8), pp. 1497-1504. Date of Electronic Publication: 2023 Jan 20.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • الموضوع:
    • نبذة مختصرة :
      Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of  +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C 8 H 13 N 5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
      (© 2023. Crown.)
    • References:
      Nunes J, Charneira C, Nunes C, Gouveia-Fernandes S, Serpa J, Morello J, Antunes AMM. A metabolomics-inspired strategy for the identification of protein covalent modifications. Front Chem. 2019;7:532. (PMID: 10.3389/fchem.2019.00532314178956684772)
      Sabbioni G, Turesky RJ. Biomonitoring human albumin adducts: the past, the present, and the future. Chem Res Toxicol. 2017;30(1):332–66. (PMID: 10.1021/acs.chemrestox.6b0036627989119)
      Yang XK, Bartlett MG. Identification of protein adduction using mass spectrometry: protein adducts as biomarkers and predictors of toxicity mechanisms. Rapid Commun Mass Spectrom. 2016;30(5):652–64. (PMID: 10.1002/rcm.746226842586)
      Carrier EJ, Zagol-Ikapitte I, Amarnath V, Boutaud O, Oates JA. Levuglandin forms adducts with histone H4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA. Biochemistry. 2014;53(15):2436–41. (PMID: 10.1021/bi401673b24684440)
      Hou LF, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012;41(1):79–105. (PMID: 10.1093/ije/dyr15422253299)
      Fabrizi L, Taylor GW, Canas B, Boobis AR, Edwards RJ. Adduction of the chloroform metabolite phosgene to lysine residues of human histone H2B. Chem Res Toxicol. 2003;16(3):266–75. (PMID: 10.1021/tx025565i12641426)
      Baillie TA. Drug–protein adducts: past, present, and future. Med Chem Res. 2020;29(7):1093–104. (PMID: 10.1007/s00044-020-02567-8)
      Huang H, Zhang D, Wang Y, Perez-Neut M, Han Z, Zheng YG, Hao Q, Zhao YM. Lysine benzoylation is a histone mark regulated by SIRT2. Nat Commun. 2018;9:3374. (PMID: 10.1038/s41467-018-05567-w301544646113264)
      Ansari NA, Chaudhary DK, Dash D. Modification of histone by glyoxal: recognition of glycated histone containing advanced glycation adducts by serum antibodies of type 1diabetes patients. Glycobiology. 2018;28(4):207–13. (PMID: 10.1093/glycob/cwy00629360983)
      Galligan JJ, Rose KL, Beavers WN, Hill S, Tallman KA, Tansey WP, Marnett LJ. Stable histone adduction by 4-Oxo-2-nonenal: a potential link between oxidative stress and epigenetics. J Am Chem Soc. 2014;136(34):11864–6. (PMID: 10.1021/ja503604t250996204151707)
      Cui YW, Li X, Lin JW, Hao Q, Li XD. Histone ketoamide adduction by 4-Oxo-2-nonenal is a reversible posttranslational modification regulated by Sirt2. ACS Chem Biol. 2017;12(1):47–51. (PMID: 10.1021/acschembio.6b0071328103679)
      Zhang MY, Hu YD, Li W, Sun C, Guan CJ, Peng Y, Zheng J. In vitro and in vivo metabolic activation and hepatotoxicity of environmental pollutant 2,6-dimethylphenol. Chem Res Toxicol. 2022;35(6):1036–44. (PMID: 10.1021/acs.chemrestox.2c0004835583464)
      Spencer PS, Chen X. The role of protein adduction in toxic neuropathies of exogenous and endogenous origin. Toxics. 2021;9(5):98. (PMID: 10.3390/toxics9050098339469248146965)
      Chen DQ, Jin CY. Histone variants in environmental-stress-induced DNA damage repair. Mutat Res-Rev Mutat. 2019;780:55–60. (PMID: 10.1016/j.mrrev.2017.11.002)
      Preston GW, Phillips DH. Protein adductomics: analytical developments and applications in human biomonitoring. Toxics. 2019;7(2):29. (PMID: 10.3390/toxics7020029311306136631498)
      Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature. 1997;389:251–260.
      Hauck AK, Zhou T, Upadhyay A, Sun YX, O’Connor MB, Chen Y, Bernlohr DA. Histone carbonylation is a redox-regulated epigenomic mark that accumulates with obesity and aging. Antioxidants. 2020;9(12):1210. (PMID: 10.3390/antiox9121210332718067761391)
      MacAlpine DM, Almouzni G. Chromatin and DNA replication. Cold Spring Harb Perspect Biol. 2013;5(8): a010207. (PMID: 10.1101/cshperspect.a010207237511853721285)
      Maksimovic I, David Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem Sci. 2021;46(9):718–30. (PMID: 10.1016/j.tibs.2021.04.004339653148364488)
      Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5. (PMID: 10.1038/4741210638745)
      Chan JC, Maze I. Nothing is yet set in (hi)stone: novel post-translational modifications regulating chromatin function. Trends Biochem Sci. 2020;45(10):829–44. (PMID: 10.1016/j.tibs.2020.05.009324989717502514)
      Harjivan SG, Charneira C, Martins IL, Pereira SA, Espadas G, Sabido E, Beland FA, Marques MM, Antunes AMM. Covalent histone modification by an electrophilic derivative of the anti-HIV drug nevirapine. Molecules. 2021;26(5):1349. (PMID: 10.3390/molecules26051349338025797961589)
      Scumaci D, Olivo E, Fiumara CV, La Chimia M, De Angelis MT, Mauro S, Costa G, Ambrosio FA, Alcaro S, Agosti V, Costanzo FS, Cuda G. DJ-1 Proteoforms in breast cancer cells: the escape of metabolic epigenetic misregulation. Cells. 2020;9(9):1968. (PMID: 10.3390/cells9091968328589717563694)
      Goswami DG, Kant R, Ammar DA, Agarwal C, Gomez J, Agarwal R, Saba LM, Fritz KS, Tewari-Singh N. Toxic consequences and oxidative protein carbonylation from chloropicrin exposure in human corneal epithelial cells. Toxicol Lett. 2020;322:1–11. (PMID: 10.1016/j.toxlet.2019.12.02331884112)
      Hanzlik RP, Koen YM, Fang JW. Bioinformatic analysis of 302 reactive metabolite target proteins. Which ones are important for cell death? Toxicol Sci. 2013;135(2):390–401.
      US EPA. Decision documents for atrazine. 2006. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-080803_1-Apr-06.pdf.
      LeBlanc A, Sleno L. Atrazine metabolite screening in human microsomes: detection of novel reactive metabolites and glutathione adducts by LC-MS. Chem Res Toxicol. 2011;24(3):329–39. (PMID: 10.1021/tx200008f21361395)
      Dooley GP, Prenni JE, Prentiss PL, Cranmer BK, Andersen ME, Tessari JD. Identification of a novel hemoglobin adduct in Sprague Dawley rats exposed to atrazine. Chem Res Toxicol. 2006;19(5):692–700. (PMID: 10.1021/tx060023c16696572)
      Dooley GP, Hanneman WH, Carbone DL, Legare ME, Andersen ME, Tessari JD. Development of an immunochemical detection method for atrazine-induced albumin adducts. Chem Res Toxicol. 2007;20(7):1061–6. (PMID: 10.1021/tx700083v17567052)
      Chu SG, Letcher RJ. Identification and characterization of serum albumin covalent adduct formed with atrazine by liquid chromatography mass spectrometry. J Chromatog B. 2021;1163: 122503. (PMID: 10.1016/j.jchromb.2020.122503)
      Timchalk C, Dryzga MD, Langvardt PW, Kastl PE, Osborne DW. Determination of the effect of tridiphane on the pharmacokinetics of [ 14 C]-atrazine following oral administration to male Fischer 344 rats. Toxicology. 1990;61(1):27–40. (PMID: 10.1016/0300-483X(90)90004-Z2315949)
      Staes A, Vandenbussche J, Demol H, Goethals M, Yilmaz S, Hulstaert N, Degroeve S, Kelchtermans P, Martens L, Gevaert K. Asn 3 , a reliable, robust, and universal lock mass for improved accuracy in LC−MS and LC−MS/MS. Anal Chem. 2013;85(22):11054–60. (PMID: 10.1021/ac402709324134513)
      Baghalabadi V, Doucette AA. Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation. Anal Chim Acta. 2020;1138:38–48. (PMID: 10.1016/j.aca.2020.08.05733161983)
      Tucholska M, Florentinus A, Williams D, Marshall JG. The endogenous peptides of normal human serum extracted from the acetonitrile-insoluble precipitate using modified aqueous buffer with analysis by LC–ESI–Paul ion trap and Qq-TOF. J Proteomics. 2010;73(6):1254–69. (PMID: 10.1016/j.jprot.2010.02.02220211283)
      Nickerson JL, Doucette AA. Rapid and quantitative protein precipitation for proteome analysis by mass spectrometry. J Proteome Res. 2020;19(5):2035–42. (PMID: 10.1021/acs.jproteome.9b0086732195589)
      Simpson DM, Beynon RJ. Acetone precipitation of proteins and the modification of peptides. J Proteome Res. 2010;9(1):444–50. (PMID: 10.1021/pr900806x20000691)
      Switzar L, Giera M, Niessen WMA. Protein digestion: an overview of the available techniques and recent developments. J Proteome Res. 2013;12(3):1067–77. (PMID: 10.1021/pr301201x23368288)
      Maile TM, Izrael-Tomasevic A, Cheung T, Guler GD, Tindell C, Masselot A, Liang J, Zhao F, Trojer P, Classon M, Arnott D. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol Cell Proteom. 2015;14(4):1148–58. (PMID: 10.1074/mcp.O114.046573)
      Tailor A, Waddington JC, Meng XL, Park BK. Mass spectrometric and functional aspects of drug–protein conjugation. Chem Res Toxicol. 2016;29(12):1912–35. (PMID: 10.1021/acs.chemrestox.6b0014727689879)
    • Contributed Indexing:
      Keywords: Adduction; Atrazine; High-resolution Orbitrap mass spectrometry; Histone; Post-translational modification; UHPLC
    • الرقم المعرف:
      0 (Histones)
      QJA9M5H4IM (Atrazine)
      0 (Herbicides)
    • الموضوع:
      Date Created: 20230120 Date Completed: 20230302 Latest Revision: 20240119
    • الموضوع:
      20240120
    • الرقم المعرف:
      PMC9974708
    • الرقم المعرف:
      10.1007/s00216-023-04545-6
    • الرقم المعرف:
      36662240