Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Systemic factors associated with 10-year glaucoma progression in South Korean population: a single center study based on electronic medical records.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Yoon JS;Yoon JS; Kim YE; Kim YE; Lee EJ; Lee EJ; Kim H; Kim H; Kim TW; Kim TW
  • المصدر:
    Scientific reports [Sci Rep] 2023 Jan 11; Vol. 13 (1), pp. 530. Date of Electronic Publication: 2023 Jan 11.
  • نوع النشر :
    Journal Article; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Glaucoma is a multifactorial disease where various systemic features are involved in the progression of the disease. Based on initial systemic profiles in electronic medical records, this study aimed to develop a model predicting factors of long-term rapid retinal nerve fiber layer (RNFL) thinning over 5 years in 505 patients with primary open-angle glaucoma. Eyes with faster or slower RNFL thinning were stratified using a decision tree model, and systemic and ophthalmic data were incorporated into the models based on random forest and permutation methods, with the models interpreted by Shapley additive explanation plots (SHAP). According to the decision tree, a higher lymphocyte ratio (> 34.65%) was the most important systemic variable discriminating faster or slower RNFL thinning. Higher mean corpuscular hemoglobin (> 32.05 pg) and alkaline phosphatase (> 88.0 IU/L) concentrations were distinguishing factors in the eyes with lymphocyte ratios > 34.65% and < 34.65%, respectively. SHAP demonstrated larger baseline RNFL thickness, greater fluctuation of intraocular pressure (IOP), and higher maximum IOP as the strongest ophthalmic factors, while higher lymphocyte ratio and higher platelet count as the strongest systemic factors associated with faster RNFL thinning. Machine learning-based modeling identified several systemic factors as well as previously acknowledged ophthalmic risk factors associated with long-term rapid RNFL thinning.
      (© 2023. The Author(s).)
    • References:
      Kwon, Y. H., Fingert, J. H., Kuehn, M. H. & Alward, W. L. Primary open-angle glaucoma. N. Engl. J. Med. 360, 1113–1124 (2009). (PMID: 10.1056/NEJMra0804630)
      Leske, M. C., Connell, A. M., Wu, S. Y., Hyman, L. G. & Schachat, A. P. Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch. Ophthalmol. 113, 918–924 (1995). (PMID: 10.1001/archopht.1995.01100070092031)
      Czudowska, M. A. et al. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology 117, 1705–1712 (2010). (PMID: 10.1016/j.ophtha.2010.01.034)
      Sommer, A. Glaucoma risk factors observed in the Baltimore Eye Survey. Curr. Opin. Ophthalmol. 7, 93–98 (1996). (PMID: 10.1097/00055735-199604000-00016)
      Mitchell, P., Smith, W., Chey, T. & Healey, P. R. Open-angle glaucoma and diabetes: The Blue Mountains eye study, Australia. Ophthalmology 104, 712–718 (1997). (PMID: 10.1016/S0161-6420(97)30247-4)
      Mitchell, P., Lee, A. J., Rochtchina, E. & Wang, J. J. Open-angle glaucoma and systemic hypertension: The blue mountains eye study. J. Glaucoma 13, 319–326 (2004). (PMID: 10.1097/00061198-200408000-00010)
      Lee, A. J. et al. Open-angle glaucoma and systemic thyroid disease in an older population: The Blue Mountains Eye Study. Eye (London) 18, 600–608 (2004). (PMID: 10.1038/sj.eye.6700731)
      Drance, S., Anderson, D. R. & Schulzer, M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am. J. Ophthalmol. 131, 699–708 (2001). (PMID: 10.1016/S0002-9394(01)00964-3)
      Leske, M. C. et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114, 1965–1972 (2007). (PMID: 10.1016/j.ophtha.2007.03.016)
      Kaiser, H. J., Flammer, J., Graf, T. & Stumpfig, D. Systemic blood pressure in glaucoma patients. Graefes Arch. Clin. Exp. Ophthalmol. 231, 677–680 (1993). (PMID: 10.1007/BF00919280)
      Flammer, J. et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393 (2002). (PMID: 10.1016/S1350-9462(02)00008-3)
      Gherghel, D. et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am. J. Ophthalmol. 130, 597–605 (2000). (PMID: 10.1016/S0002-9394(00)00766-2)
      Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). (PMID: 10.1023/A:1010933404324)
      Altmann, A., Tolosi, L., Sander, O. & Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 26, 1340–1347 (2010). (PMID: 10.1093/bioinformatics/btq134)
      Cava, W., Bauer, C., Moore, J. H. & Pendergrass, S. A. Interpretation of machine learning predictions for patient outcomes in electronic health records. AMIA Annu. Symp. Proc. 2019, 572–581 (2020).
      Heijl, A. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120, 1268–1279 (2002). (PMID: 10.1001/archopht.120.10.1268)
      Kass, M. A. et al. The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 701–830 (2002). (PMID: 10.1001/archopht.120.6.701)
      Lee, P. P., Walt, J. W., Rosenblatt, L. C., Siegartel, L. R. & Stern, L. S. Association between intraocular pressure variation and glaucoma progression: Data from a United States chart review. Am. J. Ophthalmol. 144, 901–907 (2007). (PMID: 10.1016/j.ajo.2007.07.040)
      Nouri-Mahdavi, K. et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 111, 1627–1635 (2004). (PMID: 10.1016/j.ophtha.2004.02.017)
      Rao, H. L. et al. Relationship between intraocular pressure and rate of visual field progression in treated glaucoma. J. Glaucoma 22, 719–724 (2013). (PMID: 10.1097/IJG.0b013e318259b0c2)
      Leung, C. K. et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investig. Ophthalmol. Vis. Sci. 51, 217–222 (2010). (PMID: 10.1167/iovs.09-3468)
      Kim, Y. W., Lee, E. J., Kim, T. W., Kim, M. & Kim, H. Microstructure of beta-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology 121, 1341–1349 (2014). (PMID: 10.1016/j.ophtha.2014.01.008)
      Lee, E. J. et al. Comparison between lamina cribrosa depth and curvature as a predictor of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmol. Glaucoma 1, 44–51 (2018). (PMID: 10.1016/j.ogla.2018.05.007)
      Radius, R. L. & Anderson, D. R. The histology of retinal nerve fiber layer bundles and bundle defects. Arch. Ophthalmol. 97, 948–950 (1979). (PMID: 10.1001/archopht.1979.01020010506027)
      Hood, D. C. et al. Retinal nerve fiber structure versus visual field function in patients with ischemic optic neuropathy. A test of a linear model. Ophthalmology 115, 904–910 (2008). (PMID: 10.1016/j.ophtha.2007.06.001)
      Kuchtey, J., Rezaei, K. A., Jaru-Ampornpan, P., Sternberg, P. Jr. & Kuchtey, R. W. Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Investig. Ophthalmol. Vis. Sci. 51, 6441–6447 (2010). (PMID: 10.1167/iovs.10-5216)
      Huang, P. et al. Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J. Glaucoma 19, 324–330 (2010). (PMID: 10.1097/IJG.0b013e3181b4cac7)
      Yang, X. et al. T-Lymphocyte subset distribution and activity in patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 60, 877–888 (2019). (PMID: 10.1167/iovs.18-26129)
      Wax, M. B. The case for autoimmunity in glaucoma. Exp. Eye Res. 93, 187–190 (2011). (PMID: 10.1016/j.exer.2010.08.016)
      Chen, H. et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat. Commun. 9, 3209 (2018). (PMID: 10.1038/s41467-018-05681-9)
      Gramlich, O. W. et al. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol. Commun. 3, 56 (2015). (PMID: 10.1186/s40478-015-0234-y)
      Wax, M. B. et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 28, 12085–12096 (2008). (PMID: 10.1523/JNEUROSCI.3200-08.2008)
      Coban, D. T., Ariturk, N., Elmacioglu, F. & Ulus, C. A. The relationship between glaucoma and serum vitamin B12, folic acid levels and nutrition. Acta Med. Mediterr. 31, 281–286 (2015).
      Cumurcu, T., Sahin, S. & Aydin, E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 6, 6 (2006). (PMID: 10.1186/1471-2415-6-6)
      Xu, F. et al. Homocysteine, B vitamins, methylenetetrahydrofolate reductase gene, and risk of primary open-angle glaucoma: A meta-analysis. Ophthalmology 119, 2493–2499 (2012). (PMID: 10.1016/j.ophtha.2012.06.025)
      Roedl, J. B. et al. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J. Neural Transm. (Vienna) 114, 445–450 (2007). (PMID: 10.1007/s00702-006-0556-9)
      Türkyılmaz, K. et al. Evaluation of peripapillary retinal nerve fiber layer thickness in patients with vitamin B12 deficiency using spectral domain optical coherence tomography. Curr. Eye Res. 38, 680–684 (2013). (PMID: 10.3109/02713683.2012.758291)
      Firat, P. G., Demirel, E. E., Dikci, S., Kuku, I. & Genc, O. Evaluation of iron deficiency anemia frequency as a risk factor in glaucoma. Anemia 2018, 1456323. https://doi.org/10.1155/2018/1456323 (2018). (PMID: 10.1155/2018/1456323)
      Karl, M. M. The serum alkaline phosphatase. JAMA 203, 591 (1968). (PMID: 10.1001/jama.1968.03140080051013)
      Latarya, G. et al. Human aqueous humor phosphatase activity in cataract and glaucoma. Investig. Ophthalmol. Vis. Sci. 53, 1679–1684 (2012). (PMID: 10.1167/iovs.11-9120)
      Xue, W., Comes, N. & Borras, T. Presence of an established calcification marker in trabecular meshwork tissue of glaucoma donors. Investig. Ophthalmol. Vis. Sci. 48, 3184–3194 (2007). (PMID: 10.1167/iovs.06-1403)
      Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000). (PMID: 10.1161/01.RES.87.7.e10)
      Tanimura, A., McGregor, D. H. & Anderson, H. C. Calcification in atherosclerosis. I. Human studies. J. Exp. Pathol. 2, 261–273 (1986).
      Magne, D. et al. Cartilage formation in growth plate and arteries: From physiology to pathology. BioEssays 27, 708–716 (2005). (PMID: 10.1002/bies.20254)
      Abramowitz, M. et al. Serum alkaline phosphatase and phosphate and risk of mortality and hospitalization. Clin. J. Am. Soc. Nephrol. 5, 1064–1071 (2010). (PMID: 10.2215/CJN.08621209)
      Matsumoto, Y. et al. Relationship between susceptibility to apoptosis and Fas expression in peripheral blood T cells from uremic patients: A possible mechanism for lymphopenia in chronic renal failure. Biochem. Biophys. Res. Commun. 215, 98–105 (1995). (PMID: 10.1006/bbrc.1995.2438)
      Kottel, R. H. & Fishman, W. H. Developmental alkaline phosphatases as biochemical tumor markers. In Biochemical Markers for Cancer (ed. Chu, T. M.) 93–115 (Marcel Dekker, 1982).
      Herz, F. Alkaline phosphatase isozymes in cultured human cancer cells. Experientia 41, 1357–1361 (1985). (PMID: 10.1007/BF01949989)
      Bone, G. & Lauder, I. Cellular immunity, peripheral blood lymphocyte count and pathological staging of tumours in the gastrointestinal tract. Br. J. Cancer 30, 215–221 (1974). (PMID: 10.1038/bjc.1974.184)
      Ménétrier-Caux, C., Ray-Coquard, I., Blay, J. Y. & Caux, C. Lymphopenia in cancer patients and its effects on response to immunotherapy: An opportunity for combination with cytokines?. J. Immunother. Cancer 7, 85 (2019). (PMID: 10.1186/s40425-019-0549-5)
      Hoyng, P. F., Greve, E. L., Frederikse, K., Geijssen, C. & Oosting, H. Platelet aggregation and glaucoma. Doc. Ophthalmol. 61, 167–173 (1985). (PMID: 10.1007/BF00170723)
      Matsumoto, M., Matsuhashi, H. & Nakazawa, M. Normal tension glaucoma and primary open angle glaucoma associated with increased platelet aggregation. Tohoku J. Exp. Med. 193, 293–299 (2001). (PMID: 10.1620/tjem.193.293)
      Hoyng, P. F., de Jong, N., Oosting, H. & Stilma, J. Platelet aggregation, disc haemorrhage and progressive loss of visual fields in glaucoma. A seven year follow-up study on glaucoma. Int. Ophthalmol. 16, 65–73 (1992). (PMID: 10.1007/BF00918934)
      Ma, Y. et al. Association between platelet parameters and glaucoma severity in primary open-angle glaucoma. J. Ophthalmol. 2019, 3425023. https://doi.org/10.1155/2019/3425023 (2019). (PMID: 10.1155/2019/3425023)
      Pache, M. & Flammer, J. A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma. Surv. Ophthalmol. 51, 179–212 (2006). (PMID: 10.1016/j.survophthal.2006.02.008)
      Watanabe, Y., Hamanaka, T., Takemura, T. & Murakami, A. Involvement of platelet coagulation and inflammation in the endothelium of Schlemm’s canal. Investig. Ophthalmol. Vis. Sci. 51, 277–283 (2010). (PMID: 10.1167/iovs.08-3279)
      Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems 4768–4777 (2017).
      Rodriguez-Perez, R. & Bajorath, J. Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J. Med. Chem. 63, 8761–8777 (2020). (PMID: 10.1021/acs.jmedchem.9b01101)
      Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001). (PMID: 10.1214/aos/1013203451)
    • الموضوع:
      Date Created: 20230111 Date Completed: 20230113 Latest Revision: 20230228
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC9834254
    • الرقم المعرف:
      10.1038/s41598-023-27858-z
    • الرقم المعرف:
      36631494