Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

LINC02870 facilitates SNAIL translation to promote hepatocellular carcinoma progression.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
    • بيانات النشر:
      Publication: New York : Springer
      Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
    • الموضوع:
    • نبذة مختصرة :
      Exploring the roles of long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis could contribute to the recognition of novel diagnostic and therapeutic targets. LINC02870 is a novel lncRNA, whose role in tumors has not been reported. Herein, we focused on the function and mechanism of LINC02870 in human hepatocellular carcinoma (HCC). We first carried out a pan-cancer study of LINC02870 expression and its relationship to prognosis, and LINC02870 was determined to be a possible oncogene in HCC. Upregulated expressions of LINC02870 were also found in our HCC samples compared to the para-tumor samples. Moreover, overexpression of LINC02870 promoted the growth, migration, and invasion of HCC cells. Subsequently, binding proteins of LINC02870 were identified by a number of in silico analyses, including correlation analysis, signaling network analysis, and survival analysis. Intriguingly, the most promising binding protein of LINC02870 was predicted and confirmed to be eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), an important component of the eukaryotic translation initiation factor 4F complex that initiates cap-dependent translation. Further investigation showed that LINC02870 increased the translation of SNAIL to induce malignant phenotypes in HCC cells. Additionally, HCC patients with higher expression levels of LINC02870 and EIF4G1 had shorter survival times than those with lower expression levels. Thus, our findings suggested that LINC02870 induced SNAIL translation and correlated with poor prognosis and tumor progression in HCC.
      (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492. (PMID: 10.3322/caac.2149230207593)
      Levrero M, Zucman-Rossi J (2016) Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 64:S84–S101. https://doi.org/10.1016/j.jhep.2016.02.021. (PMID: 10.1016/j.jhep.2016.02.02127084040)
      Mizuguchi Y, Takizawa T, Yoshida H, Uchida E (2016) Dysregulated miRNA in progression of hepatocellular carcinoma: a systematic review. Hepatol Res 46:391–406. https://doi.org/10.1111/hepr.12606. (PMID: 10.1111/hepr.1260626490438)
      Wang H, Liang L, Dong Q, Huan L, He J, Li B, Yang C, Jin H, Wei L, Yu C, Zhao F, Li J, Yao M, Qin W, Qin L, He X (2018) Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 8:2814–2829. https://doi.org/10.7150/thno.23012. (PMID: 10.7150/thno.23012297740775957011)
      Hemminki K, Hemminki A, Försti A, Sundquist K, Li X (2017) Genetics of gallbladder cancer. Lancet Oncol 18:e296. https://doi.org/10.1016/s1470-2045(17)30324-8. (PMID: 10.1016/s1470-2045(17)30324-828593851)
      Kopp F, Mendell J (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407. https://doi.org/10.1016/j.cell.2018.01.011. (PMID: 10.1016/j.cell.2018.01.011293738285978744)
      Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21. https://doi.org/10.1038/nrg3606. (PMID: 10.1038/nrg360624296535)
      Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, Yuan P, Yang J, Qin T, Wan S, Xing J (2019) Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene 38:5007–5020. https://doi.org/10.1038/s41388-019-0772-z. (PMID: 10.1038/s41388-019-0772-z308946846755992)
      Liu X, Yuan J, Wang T, Pan W, Sun S (2017) An alternative POLDIP3 transcript promotes hepatocellular carcinoma progression. Biomed Pharmacother 89:276–283. https://doi.org/10.1016/j.biopha.2017.01.139. (PMID: 10.1016/j.biopha.2017.01.13928236701)
      Zhu X, Yuan J, Zhu T, Li Y, Cheng X (2016) Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J 283:3739–3754. https://doi.org/10.1111/febs.13839. (PMID: 10.1111/febs.1383927573079)
      Guo W, Liu S, Cheng Y, Lu L, Shi J, Xu G, Li N, Cheng K, Wu M, Cheng S, Liu S (2016) ICAM-1-related noncoding RNA in cancer stem cells maintains ICAM-1 expression in hepatocellular carcinoma. Clin Cancer Res 22:2041–2050. https://doi.org/10.1158/1078-0432.ccr-14-3106. (PMID: 10.1158/1078-0432.ccr-14-310626667486)
      Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, Tong X, Yang W, Xu Q, Huang D, Tu K (2019) A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer 18:28. https://doi.org/10.1186/s12943-019-0957-7. (PMID: 10.1186/s12943-019-0957-7307821886381672)
      Ding J, Zhao J, Huan L, Liu Y, Qiao Y, Wang Z, Chen Z, Huang S, Zhao Y, He X (2020) Inflammation-induced long intergenic noncoding RNA (LINC00665) increases malignancy through activating the double-stranded RNA-activated protein kinase/nuclear factor kappa B pathway in hepatocellular carcinoma. Hepatology 72:1666–1681. https://doi.org/10.1002/hep.31195. (PMID: 10.1002/hep.3119532083756)
      Yang B, Liu Y, Zhao J, Hei K, Zhuang H, Li Q, Wei W, Chen R, Zhang N, Li Y (2017) Ectopic overexpression of filamin C scaffolds MEK1/2 and ERK1/2 to promote the progression of human hepatocellular carcinoma. Cancer Lett 388:167–176. https://doi.org/10.1016/j.canlet.2016.11.037. (PMID: 10.1016/j.canlet.2016.11.03727919788)
      Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247. (PMID: 10.1093/nar/gkx247284071455570223)
      Lánczky A, Győrffy B (2021) Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res 23:e27633. https://doi.org/10.2196/27633. (PMID: 10.2196/27633343095648367126)
      Lang B, Armaos A, Tartaglia G (2019) RNAct: protein-RNA interaction predictions for model organisms with supporting experimental data. Nucleic Acids Res 47:D601–D606. https://doi.org/10.1093/nar/gky967. (PMID: 10.1093/nar/gky96730445601)
      Szklarczyk D, Gable A, Nastou K, Lyon D, Kirsch R, Pyysalo S, Doncheva N, Legeay M, Fang T, Bork P, Jensen L, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612. https://doi.org/10.1093/nar/gkaa1074. (PMID: 10.1093/nar/gkaa107433237311)
      Yao R, Wang Y, Chen L (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551. https://doi.org/10.1038/s41556-019-0311-8. (PMID: 10.1038/s41556-019-0311-831048766)
      Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. https://doi.org/10.1016/j.cell.2009.02.006. (PMID: 10.1016/j.cell.2009.02.00619239885)
      Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK (2020) EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol 30:764–776. https://doi.org/10.1016/j.tcb.2020.07.003. (PMID: 10.1016/j.tcb.2020.07.003328006587647095)
      Mittal V (2018) Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 13:395–412. https://doi.org/10.1146/annurev-pathol-020117-043854. (PMID: 10.1146/annurev-pathol-020117-04385429414248)
      Gingras A, Raught B, Sonenberg N (2004) mTOR signaling to translation. Curr Top Microbiol 279:169–197. https://doi.org/10.1007/978-3-642-18930-2_11. (PMID: 10.1007/978-3-642-18930-2_11)
      Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I (2015) Targeting the translation machinery in cancer. Nat Rev Drug Discov 14:261–278. https://doi.org/10.1038/nrd4505. (PMID: 10.1038/nrd450525743081)
      Pelletier J, Graff J, Ruggero D, Sonenberg N (2015) Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 75:250–263. https://doi.org/10.1158/0008-5472.Can-14-2789. (PMID: 10.1158/0008-5472.Can-14-2789255930334299928)
      Wang J, Wang L, Zhang S, Fan J, Yang H, Li Q, Guo C (2020) Novel eIF4E/eIF4G protein-protein interaction inhibitors DDH-1 exhibits anti-cancer activity in vivo and in vitro. Int J Biol Macromol 160:496–505. https://doi.org/10.1016/j.ijbiomac.2020.05.233. (PMID: 10.1016/j.ijbiomac.2020.05.23332479946)
      Zhao Y, Li C, Zhang Y, Li Z (2022) CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis. Cell Death Dis 13:250. https://doi.org/10.1038/s41419-022-04686-z. (PMID: 10.1038/s41419-022-04686-z353012918930977)
      Marash L, Liberman N, Henis-Korenblit S, Sivan G, Reem E, Elroy-Stein O, Kimchi A (2008) DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis. Mol Cell 30:447–459. https://doi.org/10.1016/j.molcel.2008.03.018. (PMID: 10.1016/j.molcel.2008.03.01818450493)
      Wu M, Zhang C, Li XJ, Liu Q, Wanggou S (2016) Anti-cancer effect of cap-translation inhibitor 4EGI-1 in human glioma U87 cells: involvement of mitochondrial dysfunction and ER stress. Cell Physiol Biochem 40:1013–1028. https://doi.org/10.1159/000453158. (PMID: 10.1159/00045315827941351)
      Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074. (PMID: 10.1038/nrg307422094949)
      Adams B, Parsons C, Walker L, Zhang W, Slack F (2017) Targeting noncoding RNAs in disease. J Clin Invest 127:761–771. https://doi.org/10.1172/jci84424. (PMID: 10.1172/jci84424282481995330746)
      Liu N, Liu Q, Yang X, Zhang F, Li X, Ma Y, Guan F, Zhao X, Li Z, Zhang L, Ye X (2018) Hepatitis B virus-upregulated LNC-HUR1 promotes cell proliferation and tumorigenesis by blocking p53 activity. Hepatology 68:2130–2144. https://doi.org/10.1002/hep.30098. (PMID: 10.1002/hep.3009829790592)
      Spizzo R, Almeida M, Colombatti A, Calin G (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587. https://doi.org/10.1038/onc.2011.621. (PMID: 10.1038/onc.2011.621222668733433647)
      Velagapudi S, Cameron M, Haga C, Rosenberg L, Lafitte M, Duckett D, Phinney D, Disney M (2016) Design of a small molecule against an oncogenic noncoding RNA. P Natl Acad Sci Usa 113:5898–5903. https://doi.org/10.1073/pnas.1523975113. (PMID: 10.1073/pnas.1523975113)
      Böhmdorfer G, Wierzbicki AT (2015) Control of chromatin structure by long noncoding RNA. Trends Cell Biol 25:623–632. https://doi.org/10.1016/j.tcb.2015.07.002. (PMID: 10.1016/j.tcb.2015.07.002264104084584417)
      Connerty P, Lock R, de Bock C (2020) Long non-coding RNAs: major regulators of cell stress in cancer. Front Oncol 10:285. https://doi.org/10.3389/fonc.2020.00285. (PMID: 10.3389/fonc.2020.00285322661307099402)
      Szklarczyk D, Morris J, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva N, Roth A, Bork P, Jensen L, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937. (PMID: 10.1093/nar/gkw93727924014)
      Huang Z, Zhou J, Peng Y, He W, Huang C (2020) The role of long noncoding RNAs in hepatocellular carcinoma. Mol Cancer 19:77. https://doi.org/10.1186/s12943-020-01188-4. (PMID: 10.1186/s12943-020-01188-4322955987161154)
      Ali M, Ur Rahman M, Jia Z, Jiang C (2017) Eukaryotic translation initiation factors and cancer. Tumour Biol 39:1010428317709805. https://doi.org/10.1177/1010428317709805. (PMID: 10.1177/101042831770980528653885)
      Jia X, Shi L, Wang X, Luo L, Ling L, Yin J, Song Y, Zhang Z, Qiu N, Liu H, Deng M, He Z, Li H, Zheng G (2019) KLF5 regulated lncRNA RP1 promotes the growth and metastasis of breast cancer via repressing p27kip1 translation. Cell Death Dis 10:373. https://doi.org/10.1038/s41419-019-1566-5. (PMID: 10.1038/s41419-019-1566-5310731226509113)
      Park S, Kim L, Kim Y, Heo T, Kim H (2020) Long non-coding RNA steroid receptor activator promotes the progression of endometrial cancer via Wnt/ β-catenin signaling pathway. Int J Biol Sci 16:99–115. https://doi.org/10.7150/ijbs.35643. (PMID: 10.7150/ijbs.35643318928496930375)
      Golob-Schwarzl N, Krassnig S, Toeglhofer A, Park Y, Gogg-Kamerer M, Vierlinger K, Schröder F, Rhee H, Schicho R, Fickert P, Haybaeck J (2017) New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer 83:56–70. https://doi.org/10.1016/j.ejca.2017.06.003. (PMID: 10.1016/j.ejca.2017.06.00328715695)
      Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758. (PMID: 10.1038/nrm3758245568404240281)
      Mali A, Joshi A, Hegde M, Kadam S (2018) Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition. Cancer Biol Med 15:137–156. https://doi.org/10.20892/j.issn.2095-3941.2018.0012. (PMID: 10.20892/j.issn.2095-3941.2018.0012299513385994556)
      Zhao G, Xu Y, Weng S, Zhang S, Chen Y, Shen X, Dong L, Chen S (2019) CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 38:4574–4589. https://doi.org/10.1038/s41388-019-0740-7. (PMID: 10.1038/s41388-019-0740-730742066)
      Hao L, Ha J, Kuzel P, Garcia E, Persad S (2012) Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. Br J Dermatol 166:1184–1197. https://doi.org/10.1111/j.1365-2133.2012.10824.x. (PMID: 10.1111/j.1365-2133.2012.10824.x22332917)
      Thiery J, Acloque H, Huang R, Nieto M (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. https://doi.org/10.1016/j.cell.2009.11.007. (PMID: 10.1016/j.cell.2009.11.00719945376)
      Yan X, Zhang D, Wu W, Wu S, Qian J, Hao Y, Yan F, Zhu P, Wu J, Huang G, Huang Y, Luo J, Liu X, Liu B, Chen X, Du Y, Chen R, Fan Z (2017) Mesenchymal stem cells promote Hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res 77:6704–6716. https://doi.org/10.1158/0008-5472.Can-17-1915. (PMID: 10.1158/0008-5472.Can-17-191528947421)
      Peng L, Jiang B, Yuan X, Qiu Y, Peng J, Huang Y, Zhang C, Zhang Y, Lin Z, Li J, Yao W, Deng W, Zhang Y, Meng M, Pan X, Li C, Yin D, Bi X, Li G, Lin D (2019) Super-enhancer-associated long noncoding RNA HCCL5 is activated by ZEB1 and promotes the malignancy of hepatocellular carcinoma. Cancer Res 79:572–584. https://doi.org/10.1158/0008-5472.Can-18-0367. (PMID: 10.1158/0008-5472.Can-18-036730482773)
    • Contributed Indexing:
      Keywords: EIF4G1; Metastasis; SNAIL; lncRNA
    • الرقم المعرف:
      0 (RNA, Long Noncoding)
      0 (MicroRNAs)
    • الموضوع:
      Date Created: 20221230 Date Completed: 20230721 Latest Revision: 20230721
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s11010-022-04575-1
    • الرقم المعرف:
      36583796