Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Development and validation of an open-source four-pole electrical conductivity, temperature, depth sensor for in situ water quality monitoring in an estuary.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      Most recent implementations of low-cost electrical conductivity (EC) sensors intended for water quality measurements are based on simple two-pole designs. However, in marine settings, EC often exceeds the range where two-pole sensors provide reliable results. We have developed a simple four-pole EC sensor that relies exclusively on analog-to-digital measurements made using readily available circuit boards (pyboard v.1.1 or Raspberry Pi Pico 2040) programmed using MicroPython. Other than resistors and graphite or wire electrodes, no other electronic components are required for the EC sensor. When combined with a pressure/temperature sensor (MS5803-05), an optional NTC thermistor, batteries, and a waterproof housing constructed using a PVC pipe and a 3-D-printed cap, the device becomes a working conductivity-temperature-depth sensor capable of extended field deployments. Construction is sufficiently simple that undergraduate science students can construct one during three 3-h lab periods. Lab calibrations performed on several prototypes at ECs between 0.18 and 45 mS/cm show that confidence limits as good as about ±3% of EC are possible. Re-calibration of several prototypes 1 year after initial calibration shows that long-term calibration drift is modest. Data collected by the prototypes over several tidal cycles in the Duwamish River, Washington, USA, are in agreement with data from a co-located commercial YSI-EX03 conductivity probe. When distributed across a constructed off-channel wetland in the Duwamish system, the sensors documented large amounts of spatial and temporal variability in EC, highlighting the importance of such wetlands for providing unique temperature/salinity environments potentially valuable for outmigrating juvenile salmon.
      (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Beddows, P. A., & Mallon, E. K. (2018). Cave Pearl data logger: A flexible Arduino-based logging platform for long-term monitoring in harsh environments. Sensors, 18(2), 530. https://doi.org/10.3390/s18020530.
      Blackstock, J. M., Covington, M. D., Perne, M., & Myre, J. M. (2019). Monitoring atmospheric, soil, and dissolved CO 2 using a low-cost, Arduino monitoring platform (CO 2 -lamp): Theory, fabrication, and operation. Frontiers in Earth Science, 7, 313. (PMID: 10.3389/feart.2019.00313)
      Chan, K., Schillereff, D. N., Baas, A. C. W., Chadwick, M. A., Main, B., Mulligan, M., O’Shea, F. T., Pearce, R., Smith, T. E. L., van Soesbergen, A., Tebbs, E., & Thompson, J. (2020). Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress in Physical Geography: Earth and Environment, 45(3), 305–338. https://doi.org/10.1177/0309133320956567.
      Chapin, T. P., Todd, A. S., & Zeigler, M. P. (2014). Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring. Water Resources Research, 50, 6542–6548. (PMID: 10.1002/2013WR015158)
      Cordell, J. R., Toft, J. D., Gray, A., Ruggerone, G. T., & Cooksey, M. (2011). Functions of restored wetlands for juvenile salmon in an industrialized estuary. Ecological Engineering, 37, 343–353. (PMID: 10.1016/j.ecoleng.2010.11.028)
      Dean, R. N., & Werner, F. T. (2016). A PCB environmental sensor for use in monitoring drought conditions in estuaries. Journal of Microelectronics and Electronic Packaging, 13, 182–187. (PMID: 10.4071/imaps.523)
      DeBell, T., Goertzen, L., Larson, L., Selbie, W., Selker, J., & Udell, C. (2019). Opens hub: Real-time data logging, connecting field sensors to google sheets. Frontiers in Earth Science, 7, 137. (PMID: 10.3389/feart.2019.00137)
      Divić, V., Galešić, M., Di Dato, M., Tavra, M., & Andričević, R. (2020). Application of open source electronics for measurements of surface water properties in an estuary: A case study of river jadro, croatia. Water, 12(1), 209. https://doi.org/10.3390/w12010209.
      Elsmore, K., Gaylord, B., Byrnes, J. E. K., Miller, L. P., Lyman, T. P., Byrnes, J. E. K., & Miller, L. P. (2020). Open wave height logger: An open source pressure sensor data logger for wave measurement. Limnology and oceanography, methods, 18, 335–345. (PMID: 10.1002/lom3.10370)
      Horsburgh, J. S., Aufdenkampe, A. K., Mayorga, E., Lehnert, K. A., Hsu, L., Song, L., Jones, A. S., Damiano, S. G., Tarboton, D. G., Valentine, D., Zaslavsky, I., & Whitenack, T. (2016). Observations data model 2: A community information model for spatially discrete earth observations. Environmental Modelling & Software, 79, 55–74. (PMID: 10.1016/j.envsoft.2016.01.010)
      Horsburgh, J. S., Caraballo, J., Ramirez, M., Aufdenkampe, A. K., Arscott, D. B., & Damiano, S. G. (2019). Low-cost, open-source, and low-power: But what to do with the data? Frontiers in Earth Science, 7, 67. (PMID: 10.3389/feart.2019.00067)
      Kuphaldt, T. (2019). Lessons in Industrial Instrumentation. http://www.ibiblio.org/kuphaldt/socratic/sinst/ . visited 2021-03-10.
      Lavagnini, I., & Magno, F. (2007). A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry technique. Mass Spectrometry Reviews, 26, 1–18. (PMID: 10.1002/mas.20100)
      Levine, R., Seroy, S., & Grünbaum, D. (2020). Sound and the seafloor: Determining bathymetry using student-built acoustic sensors. Oceanography, 33, 71–77. https://doi.org/10.5670/oceanog.2020.305.
      Mao, F., Khamis, K., Krause, S., Clark, J., & Hannah, D. M. (2019). Low-cost environmental sensor networks: Recent advances and future directions. Frontiers in Earth Science, 7, 221. (PMID: 10.3389/feart.2019.00221)
      McKee, C. B. (2009). An accurate equation for the electrolytic conductivity of potassium chloride solutions. Journal of solution chemistry, 38, 1155–1172. (PMID: 10.1007/s10953-009-9436-x)
      McKeon, M. A., Horner-Devine, A. R., & Giddings, S. N. (2021). Seasonal changes in structure and dynamics in an urbanized salt wedge estuary. Estuaries and Coasts, 44, 589–607. (PMID: 10.1007/s12237-020-00788-z)
      Mendez-Barroso, L. A., Rivas-Marquez, J. A., Sosa-Tinoco, I., & Robles-Morua, A. (2020). Design and implementation of a low-cost multiparameter probe to evaluate the temporal variations of water quality conditions on an estuarine lagoon system. Environmental Monitoring and Assessment, 192.
      Miller, R. L., Bradford, W. L., & Peters, N. E. (1988). Specific conductance: Theoretical considerations and application to analytical quality control. Water Supply Paper 2311. United States Geological Survey.
      Neelamegam, P., & Vasumathi, R. (2010). Atmega32 microcontroller based conductivity measurement system for chloride estimation of soil samples. Instruments and Experimental Techniques, 53, 591–595. (PMID: 10.1134/S0020441210040214)
      Ramos, P. M., Pereira, J. M. D., Ramos, H. M. G., & Ribeiro, A. L. (2008). A four-terminal water-quality-monitoring conductivity sensor. IEEE Transactions on Instrumentation and Measurement, 57, 577–583. (PMID: 10.1109/TIM.2007.911703)
      Reese, T., Wagner, E., & Rasmussen, J. (2016). Once and Future River: Reclaiming the Duwamish. Seattle: University of Washington Press.
      Seroy, S. K., Zulmuthi, H., & Grünbaum, D. (2020). Connecting chemistry concepts with environmental context using student-built pH sensors. Journal of Geoscience Education, 68, 334–344. (PMID: 10.1080/10899995.2019.1702868)
      Shi, B., Catsamas, S., Kolotelo, P., Wang, M., Lintern, A., Jovanovic, D., Bach, P. M., Deletic, A., & McCarthy, D. T. (2021) A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks. Sensors, 21.
      Simenstad, C., Tanner, C., Crandell, C., White, J., & Cordell, J. (2005). Challenges of habitat restoration in a heavily urbanized estuary: Evaluating the investment. Journal of Coastal Research, SI 40, 6–23.
      Shreiner, R., & Pratt, K. (2004). Standard reference materials: Primary standards and standard reference materials for electrolytic conductivity. NIST Special Publication 260–142. National Institute of Standards and Technology.
      Tejaswini, K. K., George, B., & Kumar, V. J. (2019). Conductivity measurement using non-contact potential electrodes and a guard ring. IEEE Sensors Journal, 19, 4688–4695. (PMID: 10.1109/JSEN.2019.2900798)
      Temple, N. A., Webb, B. M., Sparks, E. L., & Linhoss, A. C. (2020). Low-cost pressure gauges for measuring water waves. Journal of Coastal Research, 36, 661–667. (PMID: 10.2112/JCOASTRES-D-19-00118.1)
      Water Resource Inventory Area 9. (2005). Salmon habitat plan - Making our watershed fit for a king. King County Water and Land Resource Division.
      Water Resource Inventory Area 9. (2021). Salmon habitat plan 2021 update. King County Water and Land Resource Division.
    • Grant Information:
      JV-11261975 Pacific Northwest Research Station
    • Contributed Indexing:
      Keywords: CTD; Electrical conductivity; Estuarine circulation; Low-cost sensor; MicroPython
    • الموضوع:
      Date Created: 20221221 Date Completed: 20221229 Latest Revision: 20221229
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s10661-022-10493-y
    • الرقم المعرف:
      36542156