Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genome-wide survey of catalase genes in Brassica rapa, Brassica oleracea, and Brassica napus: identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Austria NLM ID: 9806853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6102 (Electronic) Linking ISSN: 0033183X NLM ISO Abbreviation: Protoplasma Subsets: MEDLINE
    • بيانات النشر:
      Publication: <1998->: Wien ; New York : Springer
      Original Publication: Leipzig : Verlag von Gebrüder Borntraeger, 1927-
    • الموضوع:
    • نبذة مختصرة :
      Catalase (CAT, EC 1.11.1.6), one of the most important antioxidant enzymes, can control excess levels of H 2 O 2 produced under oxidative stress in plants. In this study, 16, 8, and 7 CAT genes in the genome of Brassica napus, B. rapa, and B. oleracea were identified, respectively. Phylogenetic studies showed that CATs could be divided into two main groups, each containing specific monocotyledon and dicotyledon subgroups. Motifs, gene structure, and intron phase of CATs in B. napus, Brassica rapa, and Brassica oleracea are highly conserved. Analysis of codon usage bias showed the mutation pressure and natural selection of the codon usage of CATs. Segmental duplication and polyploid were major factors in the expansion of this gene family in B. napus, and genes have experienced  negative selection during evolution. Existence of hormones and stress-responsive cis-elements and identifying miRNA molecules affecting CATs showed that these genes are complexly regulated at the transcriptional and posttranscriptional levels. Based on RNA-seq data, CATs are divided into two groups; the first group has moderate and specific expression in flowers, leaves, stems, and roots, while the second group shows expression in most tissues. qRT-PCR analysis showed that the expression of these genes is dynamic and has a specific expression consistent with other CAT genes in response to salinity and cadmium (Cd) stresses. These results provide information for further investigation of the function of CAT genes in response to stresses and the development of tolerant  plants.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Abedi A, Hajiahmadi Z, Kordrostami M, Esmaeel Q, Jacquard C (2021) Analyses of lysin-motif receptor-like kinase (LysM-RLK) gene family in allotetraploid Brassica napus L and its progenitor species: an in silico study. Cells 11(1):37. https://doi.org/10.3390/cells11010037. (PMID: 10.3390/cells11010037350115988750388)
      Alam NB, Ghosh A (2018) Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. Plant Physiol Biochem 123:54–64. https://doi.org/10.1016/j.plaphy.2017.11.018. (PMID: 10.1016/j.plaphy.2017.11.01829223068)
      Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom,.
      Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1):W597–W603. https://doi.org/10.1093/nar/gks400. (PMID: 10.1093/nar/gks400226615803394269)
      Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416. (PMID: 10.1093/nar/gkv416259538514489269)
      Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170. (PMID: 10.1093/bioinformatics/btu170246954044103590)
      Çakır Ö, Arıkan B, Karpuz B, Turgut-Kara N (2021) Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274. Biotechnol Biotechnol Equip 35(1):283–290. https://doi.org/10.1080/13102818.2020.1870871. (PMID: 10.1080/13102818.2020.1870871)
      Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B (2018) Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Int J Mol Sci 19(9):2812. https://doi.org/10.3390/ijms19092812. (PMID: 10.3390/ijms19092812302315216163176)
      Chaudhry S, Sidhu GPS (2021) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep:1–31. https://doi.org/10.1007/s00299-021-02759-5.
      Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34(12):2013–2025. https://doi.org/10.1007/s00299-015-1847-0. (PMID: 10.1007/s00299-015-1847-026242449)
      Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009. (PMID: 10.1016/j.molp.2020.06.00932585190)
      Choudhury MN, Uddin A, Chakraborty S (2017) Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome. Genetica 145(3):295–305. https://doi.org/10.1007/s10709-017-9965-y. (PMID: 10.1007/s10709-017-9965-y28421323)
      Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54. https://doi.org/10.1093/nar/gky316. (PMID: 10.1093/nar/gky316297184246030838)
      Di F, Jian H, Wang T, Chen X, Ding Y, Du H, Lu K, Li J, Liu L (2018) Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes 9(3):156. https://doi.org/10.3390/genes9030156. (PMID: 10.3390/genes9030156295345585867877)
      Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703. https://doi.org/10.1104/pp.18.00485. (PMID: 10.1104/pp.18.00485299255866084659)
      Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635. (PMID: 10.1093/bioinformatics/bts63523104886)
      Eshkiki EM, Hajiahmadi Z, Abedi A, Kordrostami M, Jacquard C (2020) In silico analyses of autophagy-related genes in rapeseed (Brassica napus L.) under different abiotic stresses and in various tissues. Plants 9(10):1393. https://doi.org/10.3390/plants9101393. (PMID: 10.3390/plants9101393330921807594038)
      Fan M, Sun X, Liao Z, Wang J, Cui D, Xu N (2018) Full-length cDNA cloning, characterization of catalase from Ulva prolifera and antioxidant response to diphenyliodonium. J Appl Phycol 30(6):3361–3372. https://doi.org/10.1007/s10811-018-1567-2. (PMID: 10.1007/s10811-018-1567-2)
      Feki K, Kamoun Y, Mahmoud RB, Farhat-Khemakhem A, Gargouri A, Brini F (2015) Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase. Plant Physiol Biochem 97:420–431. https://doi.org/10.1016/j.plaphy.2015.10.034. (PMID: 10.1016/j.plaphy.2015.10.03426555900)
      Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant, Cell Environment 39(5):951–964. https://doi.org/10.1111/pce.12621. (PMID: 10.1111/pce.1262126264148)
      Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149(1):355–365. https://doi.org/10.1093/genetics/149.1.355. (PMID: 10.1093/genetics/149.1.35595841091460146)
      Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186. https://doi.org/10.1093/nar/gkr944. (PMID: 10.1093/nar/gkr94422110026)
      Gupta DK, Palma JM, Corpas FJ (2018) Antioxidants and antioxidant enzymes in higher plants. Springer. https://doi.org/10.1007/978-3-319-75088-0. (PMID: 10.1007/978-3-319-75088-0)
      Gupta S, Dong Y, Dijkwel PP, Mueller-Roeber B, Gechev TS (2019) Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. Int J Mol Sci 20(12):3101. https://doi.org/10.3390/ijms20123101. (PMID: 10.3390/ijms20123101312426116627786)
      Hajiahmadi Z, Abedi A, Wei H, Sun W, Ruan H, Zhuge Q, Movahedi A (2020) Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genomics 21(1):1–20. https://doi.org/10.1186/s12864-020-07199-1. (PMID: 10.1186/s12864-020-07199-1)
      Hu L, Yang Y, Jiang L, Liu S (2016) The catalase gene family in cucumber: genome-wide identification and organization. Genet Mol Biol 39(3):408–415. https://doi.org/10.1590/1678-4685-GMB-2015-0192. (PMID: 10.1590/1678-4685-GMB-2015-0192275609905004828)
      Huang T, Luo X, Fan Z, Yang Y, Wan W (2021) Genome-wide identification and analysis of the sucrose synthase gene family in cassava (Manihot esculenta Crantz). Gene 769:145191. https://doi.org/10.1016/j.gene.2020.145191. (PMID: 10.1016/j.gene.2020.14519133007377)
      Joo J, Lee YH, Song SI (2014) Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. Journal of Plant Biology 57(6):375–382. https://doi.org/10.1007/s12374-014-0383-8. (PMID: 10.1007/s12374-014-0383-8)
      Kaouthar F, Ameny F-K, Yosra K, Walid S, Ali G, Faical B (2016) Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. J Plant Physiol 198:56–68. https://doi.org/10.1016/j.jplph.2016.03.019. (PMID: 10.1016/j.jplph.2016.03.01927152457)
      Kaur G, Sharma S, Das N (2020) Comparison of catalase activity in different organs of the potato (Solanum tuberosum L.) cultivars grown under field condition and purification by three-phase partitioning. Acta Physiologiae Plantarum 42(1):1–11. https://doi.org/10.1007/s11738-019-3002-y. (PMID: 10.1007/s11738-019-3002-y)
      Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054. (PMID: 10.1093/molbev/msw054270049048210823)
      Labidi O, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM, Sleimi N (2021) Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress. Food Sci Nutr. https://doi.org/10.1002/fsn3.2169. (PMID: 10.1002/fsn3.2169338418208020919)
      Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134. https://doi.org/10.1002/pro.3289. (PMID: 10.1002/pro.328928875543)
      Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327. https://doi.org/10.1093/nar/30.1.325. (PMID: 10.1093/nar/30.1.3251175232799092)
      Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452. https://doi.org/10.1093/bioinformatics/btp187. (PMID: 10.1093/bioinformatics/btp18719346325)
      Liebsch D, Palatnik JF (2020) MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53:31–42. https://doi.org/10.1016/j.pbi.2019.09.008. (PMID: 10.1016/j.pbi.2019.09.00831726426)
      Ling L, Qu Y, Zhu J, Wang D, Guo C (2020) Genome-wide identification and expression analysis of the VQ gene family in Cicer arietinum and Medicago truncatula. PeerJ 8:e8471. https://doi.org/10.7717/peerj.8471. (PMID: 10.7717/peerj.8471321176147006518)
      Liu W, Zhao D, Zheng C, Chen C, Peng X, Cheng Y, Wan H (2017) Genomic analysis of the ASMT gene family in Solanum lycopersicum. Molecules 22(11):1984. https://doi.org/10.3390/molecules22111984. (PMID: 10.3390/molecules22111984291444056150316)
      Liu M, Dong H, Wang M, Liu Q (2020a) Evolutionary divergence of function and expression of laccase genes in plants. J Genet 99(1):1–16. https://doi.org/10.1007/s12041-020-1184-0. (PMID: 10.1007/s12041-020-1184-0)
      Liu X, Zhao C, Yang L, Zhang Y, Wang Y, Fang Z, Lv H (2020) Genome-wide identification, expression profile of the TIFY gene family in Brassica oleracea var capitata, and their divergent response to various pathogen infections and phytohormone treatments. Genes 11(2):127. https://doi.org/10.3390/genes11020127. (PMID: 10.3390/genes11020127319916067073855)
      Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
      Lohani N, Jain D, Singh MB, Bhalla PL (2020) Engineering multiple abiotic stress tolerance in canola. Brassica Napus Frontiers in Plant Sci 11:3. https://doi.org/10.3389/fpls.2020.00003. (PMID: 10.3389/fpls.2020.00003)
      Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19(1):1–31. https://doi.org/10.1186/s12863-017-0596-1. (PMID: 10.1186/s12863-017-0596-1)
      Maldonado LL, Stegmayer G, Milone DH, Oliveira G, Rosenzvit M, Kamenetzky L (2018) Whole genome analysis of codon usage in Echinococcus. Molecular Biochemical Parasitology 225:54–66. https://doi.org/10.1016/j.molbiopara.2018.08.001. (PMID: 10.1016/j.molbiopara.2018.08.00130081061)
      Meng JG, Zhang XD, Tan SK, Zhao KX, Yang ZM (2017) Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Biometals 30(6):917–931. https://doi.org/10.1007/s10534-017-0057-3. (PMID: 10.1007/s10534-017-0057-328993932)
      Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/S1360-1385(02)02312-9. (PMID: 10.1016/S1360-1385(02)02312-912234732)
      Nair MM, Krishna T, Alagu M (2020) Bioinformatics insights into microRNA mediated gene regulation in Triticum aestivum during multiple fungal diseases. Plant Gene 21:100219. https://doi.org/10.1016/j.plgene.2019.100219. (PMID: 10.1016/j.plgene.2019.100219)
      Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science Pollution Research 22(6):4056–4075. https://doi.org/10.1007/s11356-014-3739-1. (PMID: 10.1007/s11356-014-3739-125398215)
      Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448. (PMID: 10.1093/nar/gky448299058716030962)
      Qanmber G, Liu J, Yu D, Liu Z, Lu L, Mo H, Ma S, Wang Z, Yang Z (2019) Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. Int J Mol Sci 20(7):1750. https://doi.org/10.3390/ijms20071750. (PMID: 10.3390/ijms20071750309706296479967)
      Qu C, Wang L, Zhao Y, Liu C (2020) Molecular evolution of maize ascorbate peroxidase genes and their functional divergence. Genes 11(10):1204. https://doi.org/10.3390/genes11101204. (PMID: 10.3390/genes11101204330764447602589)
      Rizwan M, Ali S, ur Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack F, Ok YS, (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191. https://doi.org/10.1016/j.scitotenv.2018.03.104. (PMID: 10.1016/j.scitotenv.2018.03.10429727943)
      Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570. https://doi.org/10.3389/fpls.2016.00570. (PMID: 10.3389/fpls.2016.00570272000434848386)
      Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E, Niazi A (2018) Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 45(5):1111–1124. https://doi.org/10.1007/s11033-018-4262-0. (PMID: 10.1007/s11033-018-4262-030039430)
      Sheoran S, Pandey B, Sharma P, Narwal S, Singh R, Sharma I, Chatrath R (2013) In silico comparative analysis and expression profile of antioxidant proteins in plants. Genetics Molecular Research 12(1):537–551. https://doi.org/10.4238/2013.february.27.3. (PMID: 10.4238/2013.february.27.323512671)
      Shi J, Wan H, Zai W, Xiong Z, Wu W (2020) Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to Ralstonia solanacearum in tomato. Genes 11(5):487. https://doi.org/10.3390/genes11050487. (PMID: 10.3390/genes11050487323656437291212)
      Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817. (PMID: 10.3389/fpls.2016.00817273791174906921)
      Song H, Wang P, Li C, Han S, Lopez-Baltazar J, Zhang X, Wang X (2016) Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep35245. (PMID: 10.1038/srep35245)
      Song J-M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6(1):34–45. https://doi.org/10.1038/s41477-019-0577-7. (PMID: 10.1038/s41477-019-0577-7319326766965005)
      Sooch BS, Kauldhar BS, Puri M (2014) Recent insights into microbial catalases: isolation, production and purification. Biotechnol Adv 32(8):1429–1447. https://doi.org/10.1016/j.biotechadv.2014.09.003. (PMID: 10.1016/j.biotechadv.2014.09.00325261851)
      Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P, Ren T, Wang X, Li X, Shao Q (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integr Plant Biol 60(7):591–607. https://doi.org/10.1111/jipb.12649. (PMID: 10.1111/jipb.1264929575603)
      Su W, Ren Y, Wang D, Huang L, Fu X, Ling H, Su Y, Huang N, Tang H, Xu L (2020) New insights into the evolution and functional divergence of the CIPK gene family in Saccharum. BMC Genomics 21(1):1–20. https://doi.org/10.1186/s12864-020-07264-9. (PMID: 10.1186/s12864-020-07264-9)
      Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics (1):2.3. 1–2.3. 22. https://doi.org/10.1002/0471250953.bi0203s00.
      Tounsi S, Kamoun Y, Feki K, Jemli S, Saïdi MN, Ziadi H, Alcon C, Brini F (2019) Localization and expression analysis of a novel catalase from Triticum monococcum TmCAT1 involved in response to different environmental stresses. Plant Physiol Biochem 139:366–378. https://doi.org/10.1016/j.plaphy.2019.03.039. (PMID: 10.1016/j.plaphy.2019.03.03930954019)
      Tyagi S, Singh K, Upadhyay SK (2021) Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). J Hazard Mater 403:123585. https://doi.org/10.1016/j.jhazmat.2020.123585. (PMID: 10.1016/j.jhazmat.2020.12358532810714)
      Verma D, Lakhanpal N, Singh K (2019) Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B rapa. BMC Genomics 20(1):1–18. https://doi.org/10.1186/s12864-019-5593-5. (PMID: 10.1186/s12864-019-5593-5)
      Wang P, Wang Y, Ren F (2019) Genome-wide identification of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family in grape (Vitis vinifera L.). BMC Genomics 20(1):1–13. https://doi.org/10.1186/s12864-019-5944-2. (PMID: 10.1186/s12864-019-5944-2)
      Wang T, Ping X, Cao Y, Jian H, Gao Y, Wang J, Tan Y, Xu X, Lu K, Li J (2019) Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol 19(1):1–15. https://doi.org/10.1186/s12870-019-1936-2. (PMID: 10.1186/s12870-019-1936-2)
      Wang W, Cheng Y, Chen D, Liu D, Hu M, Dong J, Zhang X, Song L, Shen F (2019c) The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis. Cells 8(2):86. https://doi.org/10.3390/cells8020086. (PMID: 10.3390/cells8020086306827776406514)
      Wang W, Chen D, Liu D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F (2020) Comprehensive analysis of the Gossypium hirsutum L. respiratory burst oxidase homolog (Ghrboh) gene family. BMC Genomics 21(1):1–19. https://doi.org/10.1186/s12864-020-6503-6. (PMID: 10.1186/s12864-020-6503-6)
      Wang X, Wu J, Liang J, Cheng F, Wang X (2015) Brassica database (BRAD) version 20: integrating and mining Brassicaceae species genomic resources. Database 2015. https://doi.org/10.1093/database/bav093.
      Wu C, Ding X, Ding Z, Tie W, Yan Y, Wang Y, Yang H, Hu W (2019) The class III peroxidase (pod) gene family in cassava: identification, phylogeny, duplication, and expression. Int J Mol Sci 20(11):2730. https://doi.org/10.3390/ijms20112730. (PMID: 10.3390/ijms20112730311636866600411)
      Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101(10):2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024. (PMID: 10.1016/j.bpj.2011.10.024220987523218324)
      Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signaling Behavior 8(6):e24525. https://doi.org/10.4161/psb.24525. (PMID: 10.4161/psb.24525236039593908942)
      Xu L, Zeng W, Li J, Liu H, Yan G, Si P, Yang C, Shi Y, He Q, Zhou W (2019) Characteristics of membrane-bound fatty acid desaturase (FAD) genes in Brassica napus L. and their expressions under different cadmium and salinity stresses. Environ Exp Bot 162:144–156. https://doi.org/10.1016/j.envexpbot.2019.02.016. (PMID: 10.1016/j.envexpbot.2019.02.016)
      Yadav MK, Gajbhiye S (2021) Genome-wide characterization and identification of synonymous codon usage patterns in Plasmodium knowlesi. bioRxiv. https://doi.org/10.1101/2021.01.01.425038.
      Yan F, Zhou H, Yue M, Yang G, Li H, Zhang S, Zhao P (2019) Genome-wide identification and transcriptional expression profiles of the f-box gene family in common walnut (Juglans regia L.). Forests 10(3):275. https://doi.org/10.3390/f10030275. (PMID: 10.3390/f10030275)
      Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213. (PMID: 10.1038/nmeth.3213255492654428668)
      Yang J, Ding H, Kan X (2021) Codon usage patterns and evolution of HSP60 in birds. Int J Biol Macromol 183:1002–1012. https://doi.org/10.1016/j.ijbiomac.2021.05.017. (PMID: 10.1016/j.ijbiomac.2021.05.01733971236)
      Yong B, Wang X, Xu P, Zheng H, Fei X, Hong Z, Ma Q, Miao Y, Yuan X, Jiang Y (2017) Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam. BioMed research international 2017. https://doi.org/10.1155/2017/6847532.
      Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics 64 (3):643–651. https://doi.org/10.1002/prot.21018.
      Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L, Zhang Y, Yu J, Gong H, Zhang X (2019) Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol 19(1):1–14. https://doi.org/10.1186/s12870-019-1665-6. (PMID: 10.1186/s12870-019-1665-6)
      Zhang Y, Zheng L, Yun L, Ji L, Li G, Ji M, Shi Y, Zheng X (2022) Catalase (CAT) Gene family in wheat (Triticum aestivum L.): evolution, expression pattern and function analysis. Int J Mol Sci 23(1):542. https://doi.org/10.3390/ijms23010542. (PMID: 10.3390/ijms23010542350089678745605)
      Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17(1):233–251. https://doi.org/10.1111/pbi.12960. (PMID: 10.1111/pbi.1296029873883)
    • Contributed Indexing:
      Keywords: Abiotic stress; Codon usage bias; Evolution; Gene expression; Tertiary structure
    • الرقم المعرف:
      00BH33GNGH (Cadmium)
      EC 1.11.1.6 (Catalase)
      BBX060AN9V (Hydrogen Peroxide)
      0 (Plant Proteins)
    • الموضوع:
      Date Created: 20221210 Date Completed: 20230426 Latest Revision: 20230426
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s00709-022-01822-6
    • الرقم المعرف:
      36495350