Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fluoride presence in drinking water along the southeastern part of El Bajío Guanajuatense, Guanajuato, Mexico: sources and health effects.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Morales-Arredondo JI;Morales-Arredondo JI; Armienta-Hernández MA; Armienta-Hernández MA; Lugo-Dorantes AE; Lugo-Dorantes AE; Barrera-Arrazola AP; Barrera-Arrazola AP; Flores-Ocampo IZ; Flores-Ocampo IZ; Flores-Vargas R; Flores-Vargas R
- المصدر:
Environmental geochemistry and health [Environ Geochem Health] 2023 Jun; Vol. 45 (6), pp. 3715-3742. Date of Electronic Publication: 2022 Dec 09.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
- بيانات النشر: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985- - الموضوع:
- نبذة مختصرة : Drinking water with a high natural concentration of fluoride (F - ) has serious consequences for the health of the rural population in the state of Guanajuato, Mexico, where the water contains levels of F - that are not allowed by national and international regulations (1.5 mg/L). This health problem is very common in multiple states throughout Mexico where drinking water is generally extracted from aquifers that are hosted in fractured volcanic rocks of the Tertiary. These aquifers show similar geological characteristics: deep basins that formed as a result of felsic eruptive events and the extensional deformation of the Basin and Range and are now filled with unconsolidated sediments. In this study, we assessed the occurrence of F in volcanic rocks collected at 11 sampling sites along the Sierra de Codornices in Guanajuato (ranging between 0.01299 and 0.146 wt%, average 0.039 wt%, and SD = 0.039 wt%; n = 10), a region where both rural and urban communities consume drinking water with a high F - content (up to 7.1 (mg/L). The F content is dispersed in volcanic rocks, and the highest levels are present in felsic rocks. The statistical and hydrogeochemical results of a sampling campaign of 32 wells in the Juventino Rosas (JR) and Villagran (Vill) municipalities in 2019 suggest that F - mobilization in groundwater is the product of silicate weathering and the dissolution of volcanic glass, alkaline desorption in the surfaces of F-containing minerals, and possibly ion exchange of minerals and clays or deep fluids enriched with F - , in addition to the precipitation of carbonates that decrease the Ca 2+ concentration in groundwater. All of these processes can be accelerated by groundwater geothermal characteristics within the study area. The hydrogeochemical, fluoride exposure risk, and fluoride pollution index (FPI) results, as well as the epidemiological survey, indicate that teenagers and older adults from Praderas de la Venta are at risk of exposure to F - due to the high concentrations ingested over a long period, the toxicity of the element, and its ability to accumulate in the bones. Extended exposure to elevated levels increases the risk. This work allows us to observe how the populations of JR and Vill can be exposed to high F - contents in drinking water due to the geological characteristics of the region.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.) - References: Abu Rukah, Y., & Alsokhny, K. (2004). Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Chemie Der Erde Geochemistry, 64(2), 171–181. (PMID: 10.1016/j.chemer.2003.11.003)
Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A., & Bundschuh, J. (2018). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 1(698), 134168. https://doi.org/10.1016/j.scitotenv.2019.134168.Alvarez. (PMID: 10.1016/j.scitotenv.2019.134168.Alvarez)
Alvarez, M. P., Carol, E. (2019). Geochemical occurrence of arsenic, vanadium and fluoride in groundwater of Patagonia Argentina: Sources and mobilization processes. Journal of South American Earth Sciences, 89, 1–9. (PMID: 10.1016/j.jsames.2018.10.006)
Amini, M., Mueller, K., Abbaspour, K. C., Rosenberg, T., Afyuni, M., Møller, K. N., Sarr, M., & Johnson, C. A. (2008). Statistical modeling of global geogenic fluoride contamination in groundwaters. Environmental Science and Technology, 42(10), 3662–3668. https://doi.org/10.1021/es071958y. (PMID: 10.1021/es071958y)
Anazawa, K., Tomiyasu, T., & Sakamoto H.b,. (2001). Simultaneous determination of fluorine and chlorine in rocks by ion chromatography in combination with alkali fusion and cation-exchange pretreatment. Analytical Sciences, 17, 217–219. (PMID: 10.2116/analsci.17.217)
Aoki, M. (1983). Modes of occurrence and mineralogical propenies of alunite solid solution in Osorezan geothermal area. Science Reports, Hirosake University, 30(132–1), 4l.
Armienta, M. A., & Segovia, N. (2008). Arsenic and fluoride in the groundwater of Mexico. Environmental Geochemistry and Health, 30, 345–352. https://doi.org/10.1007/s10653-008-9167-8. (PMID: 10.1007/s10653-008-9167-8)
Armienta, M. A., Rodríguez, R., Segovia, N., & Montiel, M., et al. (2010). Medical geology in Mexico, Central America and the Caribbean. In O. Selinus (Ed.), Medical geology (pp. 59–78). Springer. (PMID: 10.1007/978-90-481-3430-4_3)
APHA-AWWA and WWF (2005). Standard methods for the examination of water and wastewater. American Public health Association, the American Water Works Association, Association Water Environment Federation, Washington, D. C.
Aguillón-Robles, A., Aranda-Gómez, J. J., & Solorio-Munguía, J. G. (1994). Geología y tectónica de un conjunto de domos riolíticos del Oligoceno medio en el sur del Estado de San Luis Potosí, México: Universidad Nacional Autónoma de México. Instituto De Geología, Revista Mexicana De Ciencias Geológicas, 11, 29–42.
Araya, D., Podgorski, J., Kumi, M., Mainoo, P., & Berg, M. (2022). Fluoride contamination of groundwater resources in Ghana: Country-wide hazard modeling and stimated population at risk. Water Research., 212, 118083. https://doi.org/10.1016/j.watres.2022.118083. (PMID: 10.1016/j.watres.2022.118083)
Agency for Toxic Substances and Disease Registry Agency for Toxic Substances and Disease Registry, (ATSDR). (2003). Toxicological profile for fluoride, hydrogen fluoride, and fluorine (F). Recovered from https://www.atsdr.cdc.gov/toxprofiles/tp11-c3.pdf .
Agency for Toxic Substances and Disease Registry, (ATSDR). (2016). Resúmenes de salud pública (fluoruros, fluoruros de hidrógeno, flúor). Recuperado de https://www.atsdr.cdc.gov/es/phs/es_phs11.html .
Barranquero, R. S., Varni, M., Vega, M., Pardo, R., & Ruiz de Galarreta, A. (2016). Arsenic, fluoride, and other trace elements in the Argentina Pampean plain. Geologica Acta, 15(3), 187–200. https://doi.org/10.1344/GeologicaActa2017.15.3.3. (PMID: 10.1344/GeologicaActa2017.15.3.3)
Bashash, M., Thomas, D., Hu, H., Martinez-Mier, E. A., Sanchez, B. N., Basu, N., Peterson, K. E., Ettinger, A. S., Wright, R., Zhang, Z., Liu, Y., Schnaas, L., Mercado-García, A., Téllez-Rojo, M. M., & Hernández-Avila, M. (2016). Prenatal fluoride exposure and cognitive outcomes in children at 4 and 6–12 years of age in Mexico. Environmental Health Perspectives, 1(2016), 1–12. https://doi.org/10.1289/EHP655. (PMID: 10.1289/EHP655)
Betancourt-Lineares, A., Irigoyen-Camacho, M. E., Mejía-González, A. M., Zepeda-Zepeda, M., & Sánchez-Pérez, L. (2013). Prevalencia de fluorosis dental en localidades mexicanas ubicadas en 27 estados y el D.F. a seis años de la publicación de la Norma Oficial para la fluoruración de la sal. Revista De Investigación Clínica, 65(3), 237–247.
Cardona, B. A. (2007). Hidrogeoquimica de sistemas de flujo, regional, intermedio y local resultado del marco geologico en la mesa central : reacciones, procesos y contaminacion. (Tesis de Doctorado). Universidad Nacional Autónoma de México, México. https://repositorio.unam.mx/contenidos/92195.
Cardona, A., Banning, A., Carrillo-Rivera, J. J., Aguillón-Robles, A., Rüde, T., & de Aceves, A. J. (2018). Natural controls validation for handling elevated fluoride concentrations in extraction activated Tóthian groundwater flow systems: San Luis Potosí, Mexico. Environmental Earth Sciences, 77, 121. (PMID: 10.1007/s12665-018-7273-1)
Cerca-Martínez, L. M. (1998). Relación estratigráfica y geocronólogica entre el vulcanismo de la Sierra Madre Occidental y el Cinturón Volcánico Mexicano en la parte sur de la Sierra de Guanajuato M. Sc. Thesis, Department of Geology, Centro de Investigación y Ensenanza Superior de Ensenada (pp. 119).
Cerca-Martínez, L. M., Aguirre-Díaz, G. J., & López-Martínez, M. (2000). The geologic evolution of the southern Sierra de Guanajuato, Mexico: A documented example of the transition from the Sierra Madre Occidental to the Mexican Volcanic Belt. International Geologiy Review, 42, 131–151. https://doi.org/10.1080/00206810009465073. (PMID: 10.1080/00206810009465073)
Chae, G., Yun, S., Kwon, M., Kim, Y., & Mayer, B. (2006). Batch dissolution of granite and biotite in water: Implication for fluorine geochemistry in groundwater. Geochemical Journal, 40, 95–102. (PMID: 10.2343/geochemj.40.95)
Chang, R. (1999). Química General, séptima edición McGraw-Hill, México (pp. 1–943).
Christiansen, E. H., Sheridan, M. F., & Burt, D. M. (1986). The geology and geochemistry of Cenozoic topaz-rhyolites from western United States. Geological Society of America Special Paper, 205, 82.
Chiba, J., Kusumoto, M., Shirai, S., Ikawa, K., & Sakamoto, S. (2002). The influence of fluoride ingestion on urinary aluminum excretion in humans. Tohoku Journal of Experimental Medicine, 196(3), 139–149. (PMID: 10.1620/tjem.196.139)
Chicas, S. D., Omine, K., Prabhakaran, M., Sunitha, T. G., & Sivasankar, V. (2022). High fluoride in groundwater and associated non-carcinogenic risks at Tiruvannamalai region in Tamil Nadu, India. Ecotoxicology and Environmental Safety, 233, 113355. https://doi.org/10.1016/j.ecoenv.2022.113335. (PMID: 10.1016/j.ecoenv.2022.113335)
Clark, I. (2015). Groundwater geochemistry and isotopes (p. 456). CRC Press. (PMID: 10.1201/b18347)
Comisión Nacional del Agua (CONAGUA). (2018). Programa Nacional Hídrico (PNH) 2014–2018. https://www.gob.mx/conagua/acciones-y-programas/programa-nacional-hidrico-pnh-2014-2018 .
Coplen, B. T. (1988). Normalization of oxygen and hydrogen isotope data. Chemical Geology Isotope Geoscience Section, 72(4), 293–297. (PMID: 10.1016/0168-9622(88)90042-5)
Dahlkamp, F. J. (2010). Uranium deposits of the world USA and Latino America. Springer. (PMID: 10.1007/978-3-540-78943-7)
De, A., Mridha, D., Joardar, M., Das, A., Roy, N. C., & Roychowdhury, T. (2022). Distribution, prevalence and health risk assessment of fluoride and arsenic in groundwater from lower Gangetic plain in West Bengal, India. Groundwater for Sustainable Development, 16, 100722. https://doi.org/10.1016/j.gsd.2021.100722. (PMID: 10.1016/j.gsd.2021.100722)
De Rita, D., Cremisini, C., Cinnirella, A., & Spaziani, F. (2011). Fluorine in the rocks and sediments of volcanic áreas in central Italy: Total content, enrichement and leaching processes and hypothesis on the vulnerability of the related aquifers. Environmental Monitoring and Assessment 5781–5796.
De Pablo, L., Doval, M., La Iglesia, A., & Soriano, J. (2014). CaK-clinoptilolite, KNa-chabazite, KNa-heulandite, KNA-errionite and Na-phillipsite from tuffaceous rocks, Province of the Mesa Central, Mexico. Revista Mexicana De Ciencias Geológicas, 31(1), 116–126.
del Río-Varela, P., Nieto-Samaniego, A. F., Alaniz-Álvarez, S. A., Ángeles-Moreno, E., Escalona-Alcázar, F. J., & del Pilar-Martínez, A. (2020). Geología y estructura de las sierras de Guanajuato y Codornices, Mesa Central, México. Boletin De La Sociedad Geologica Mexicana. https://doi.org/10.18268/bsgm2020v72n1a071019. (PMID: 10.18268/bsgm2020v72n1a071019)
Deng, Y., Nordstrom, D. K., & McCleskey, R. B. (2011). Fluoride geochemistry of thermal waters in Yellowstone National Park: I Aqueous fluoride speciation. Geochemica Et Cosmochimica Acta, 75, 4476–4489. (PMID: 10.1016/j.gca.2011.05.028)
Edgar, A. D., Pizzolato, L. A., & Sheen, J. (1996). Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and ultramafic magmas and their mantle source regions. Mining Magazine, 60–399, 243–257. (PMID: 10.1180/minmag.1996.060.399.01)
Edmunds, W. M., & Smedley, P. L. (2013). Chapter 12: Fluoride in natural waters. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. L. Smedley (Eds.), Essentials of Medical Geology (2nd ed., pp. 311–336). Springer. (PMID: 10.1007/978-94-007-4375-5_13)
Environment Canada. (1993). Canadian environmental protection act priority substances list assessment report: Arsenic and its compounds. Ottawa, Canada: Canada Communication Group.
Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica Et Cosmochimica Acta, 4(5), 213–224. (PMID: 10.1016/0016-7037(53)90051-9)
Flanagan, F. J. (1976). Compilation of data on USGS standards. En Descriptions and Analyses of Eight New USGS Rock Standards. Geological Survey Professional Paper 840. United States Government Printing Office, Washington, D.C., United States (pp. 131–171).
Gibbons, J. D. (1985). Nonparametric statistical inference (2nd edn.). New York: Marcel Dekker.
Gi-Tak, C., Seong-Taek, Y., Man-Jae, Y., Yi-Seop, K., & Berbhard, M. (2006). Batch dissolution of granite and biotite in water: Implication for fluorine geochemistry in groundwater. Geochemical Journal, 40, 95–102. (PMID: 10.2343/geochemj.40.95)
Glover, E. T., Akiti, T. T., & Osae, S. (2012). Major ion chemistry and identification of hydrogeochemical processes of groundwater in the Accra Plains. Elixir Geoscience, 50, 10279–10288.
González-Partida, E., Camprubí, A., Carrillo-Chávez, A., Díaz-Carreño, E. H., González-Ruiz, L. E., Farfán-Panamá, J. L., Cienfuegos-Alvarado, E., Morales-Puente, P., & Vázquez-Ramírez, J. T. (2019). Giant fluorite mineralization in Central Mexico by means of exceptionally low salinity fluids: An unusual style among MVT deposits. Minerals, 9(1), 35. https://doi.org/10.3390/min9010035. (PMID: 10.3390/min9010035)
Govila, V., Govila, S., Gupta, S., & Singh, D. (2016). Prevention of dental fluorosis and its varied treatment options ‘A case series. International Journal of Oral Health Dentistry, 2(1), 50–55. (PMID: 10.5958/2395-499X.2016.00008.3)
Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwater of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93(1), 1–12. (PMID: 10.1016/j.gexplo.2006.07.001)
Hays. (1981). Statistics (3rd edn.). New York: CBS College Publishing.
Houssein, A. A., Elmi, R. W., Zghibi, A., & Ouddane, B. (2017). Assessment of chemical quality of groundwater in coastal volcano-sedimentary aquifer of Djibouti, Horn Africa. Journal of African Earth Sciences, 131, 284–300. (PMID: 10.1016/j.jafrearsci.2017.04.010)
Instituto de Ecología del Estado de Guanajuato (IEEG). (2008). Informe Ambiental del Estado de Guanajuato. Informe.
Instituto Nacional de Estadística y Geografía (INEGI). 2017. Anuario Estadístico y Geográfico de Guanajuato http://www.datatur.sectur.gob.mx/ITxEF_Docs/GTO_ANUARIO_PDF.pdf .
Instituto Nacional de Estadística de Guanajuato (INEGI). 2020. Presentación de resultados del Censo de Población y Vivienda 2020, Estado de Guanajuato. https://www.inegi.org.mx/contenidos/programas/ccpv/2020/doc/cpv2020_pres_res_gto.pdf .
Irigoyen-Camacho, M. E., García Pérez, A., Mejía-González, A., & Huizar-Alvarez, R. (2016). Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Science of the Total Environment, 541, 512–519. (PMID: 10.1016/j.scitotenv.2015.09.085)
Jiménez-Córdova, M. I., González-Horta, C., Ayllón-Vergara, J. C., Arreola-Mendoza, L., Aguilar-Madrid, G., Villareal-Vega, E. E., Barrera-Hernández, A., Barbier, O., & Del Razo, L. M. (2019). Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environmental Research, 169(2019), 220–228. https://doi.org/10.1016/J.ENVRES.2018.10.028. (PMID: 10.1016/J.ENVRES.2018.10.028)
Jiménez-Zabala, A., Santa-Marina, L., Otazua, M., Ayerdi, M., Galarza, A., Gallastegi, M., Ulibarrena, E., Molinuevo, A., Anabitarte, A., & Ibarluzea. (2017). Fluoride intake through consumption of water from municipal network in the INMA-Gipuzkoa cohort. Gaceta Sanitaria, 32(5), 418–427. https://doi.org/10.1016/j.gaceta.2017.02.008. (PMID: 10.1016/j.gaceta.2017.02.008)
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., & Enzweiler, J. (2015). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research., 40(3), 333–350. (PMID: 10.1111/j.1751-908X.2015.00392.x)
Johannesson, K. H., & Tang, J. (2009). Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. Journal of Hydrology., 378(1–2), 13–28. https://doi.org/10.1016/j.jhydrol.2009.09.003. (PMID: 10.1016/j.jhydrol.2009.09.003)
Juárez-Aparicio, F. (2019). Evaluación de rocas calizas del Bajío Guanajuatense en la remoción de arsénico y fluoruro en el agua subterránea. Tesis Maestría, UNAM (pp. 113) https://tesiunam.dgb.unam.mx/F/SAPN846LKFXKAB4BGADLGKTIP19PNMQXLVDRG74YXCAUYPQV7X-32942?func=full-set-set&set_number=594460&set_entry=000001&format=999 .
Landa-Arreguín, J. F., Villanueva, E. R., Rodriguez, D. A., & Morales-Arredondo, J. I. (2021). Evidence of a new geothermal prospect in the northern-central Trans-mexican Volcanic Belt: Rancho Nuevo, Guanajuato, Mexico. Journal of Iberian Geology, 47, 713–732. https://doi.org/10.1007/s41513-021-00173-0. (PMID: 10.1007/s41513-021-00173-0)
Langenauer, M., Krähenbühl, U., Furrer, V., & Wyttenbach, A. (1992). Determination of fluorine, chlorine, bromine and iodine in seven geochemical reference samples. Geostandards Newsletter, 16, 41–44. (PMID: 10.1111/j.1751-908X.1992.tb00485.x)
Leroy, L. J., Rodríguez-Ríos, R., & Dewonck, S. (2002). The topaz-bearing rhyolites from the San Luis Potosí area (Mexico): Characteristics of the lava and growth conditions of topaz. Bulletin De La Société Géologique De France, 173(6), 579–588. (PMID: 10.2113/173.6.579)
Li, D., Gao, X., Wang, Y., & Luo, W. (2018). Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China. Environmental Pollution, 237, 430–441. https://doi.org/10.1016/j.envpol.2018.02.072. (PMID: 10.1016/j.envpol.2018.02.072)
Limón-Pacheco, J. H., Jiménez-Córdova, M. I., Cárdenas-González, M., Sánchez Retana, I. M., Gonsebatt, M. E., & Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Annals of Global Health, 84(2), 257–273. (PMID: 10.29024/aogh.913)
Liu, M., & Qian, C. (2008). Effect of endemic fluorosis on children’s intelligence development: a Meta-analysis. Zhongguo Dang Dai Er Ke Za Zhi, 10(6), 723–725. in Chinese.
Nizam, S., Singh, H. V., & Sekhar, I. S. (2022). High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. Environmental Advances., 8, 100200. (PMID: 10.1016/j.envadv.2022.100200)
NOM-127-SSA1-1994-2000. (2000). Norma Oficial Mexicana ‘‘Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el aguapara su potabilización’’. México D.F. http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=22/11/2000 .
NOM-230-SSA1-2002. 2002. Norma Oficial Mexicana, Salud ambiental. Agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo in. http://www.salud.gob.mx/unidades/cdi/nom/230ssa102.html .
Michel, A., & Villemant, B. (2003). Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostandards and Geoanalytical Research, 27, 163–171. (PMID: 10.1111/j.1751-908X.2003.tb00643.x)
Mendez, M. A., González-Horta, C., Sánchez-Ramírez, B., Ballinas-Casarrubias, L., Cerón, R. H., Morales, D. V., Terrazas, F. A. B., Ishida, M. C., Gutiérrez-Torres, D. S., Saunders, R. J., Drobná, Z., Fry, R. C., Buse, J. B., Loomis, D., García-Vargas, G. G., Del Razo, L. M., & Stýblo, M. (2015). Chronic exposure to arsenic and markers of cardiometabolic risk: A cross-sectional study in Chihuahua, Mexico. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1408742. (PMID: 10.1289/ehp.1408742)
Morales-Arredondo, J. I., Villanueva-Estrada, R. E., Rodríguez, R., & Armienta, M. A. (2015). Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environmental Earth Sciences., 74(6), 5403–5415. (PMID: 10.1007/s12665-015-4554-9)
Morales-Arredondo, J. I., Esteller-Alberich, M. V., Armienta Hernández, M. A., & Martínez-Florentino, T. A. K. (2018a). Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico. Journal of Geochemical Exploration, 185, 93–104. (PMID: 10.1016/j.gexplo.2017.11.006)
Morales Arredondo, J. I., Armienta Hernández, M. A., & Rodríguez Castillo, R. (2018b). Estimación de la exposición a elevados contenidos de fluoruro en agua potable en distintas comunidades de Guanajuato México. Tecnologia y Ciencias Del AguA; IX.
Morales-Arredondo, J. I., Armienta-Hernández, M. A., Ortega-Gutiérrez, J. E., Flores-Ocampo, I. Z., & Flores-Vargas, R. (2020a). Evaluation of the CO2 behavior in a termal aquifer located at Central Mexico and its relation to silicate weathering. International Journal of Environmental Science and Technology, 17(7), 3411–3430. https://doi.org/10.1007/s13762-020-02683-3. (PMID: 10.1007/s13762-020-02683-3)
Morales-Arredondo, J. I., Flores-Ocampo, I. Z., Armienta Hernández, M. A., Moran-Ramírez, J., Hernández-Hernández, M. A., & Landa-Arreguin, J. F. (2020b). Identificación de las fuentes de nitratos mediante métodos hidrogeoquímicos e isotópicos en el agua subterránea del Bajío Guanajuatense. Geofísica Internacional, 59(3), 169–194. (PMID: 10.22201/igeof.00167169p.2020.59.3.2093)
Moran-Ramírez, J., Morales-Arredondo, J. I., Armienta Hernández, M. A., & Ramos-Leal, J. A. (2020). Quantification of the mixture of hydrothermal and fresh water in tectonic valleys. Journal of Earth Science (aceptado). https://doi.org/10.1007/s12583-020-1294-x. (PMID: 10.1007/s12583-020-1294-x)
Mostafizur, R., Bodrud-Doza, T. S. M., Zahid, A., Md, R. A., & Islam, T. (2020). Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh. Science of the Total Environment, 724, 138316. https://doi.org/10.1016/j.scitotenv.2020.138316. (PMID: 10.1016/j.scitotenv.2020.138316)
Mridha, D., Priyadarshni, P., Bhaskar, K., Gaurav, A., De, A., Das, A., Joardar, M., Roy, N. C., & Roychowdhury, T. (2021). Fluoride exposure and its potential health risk assessment in drinking water and staple food in the population from fluoride endemic regions of Bihar. Groundwater for Sustainable Development., 13, 100558. https://doi.org/10.1016/j.gsd.2021.200558. (PMID: 10.1016/j.gsd.2021.200558)
Onipe, T., Edokpayi, N. J., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, Part A. https://doi.org/10.1080/10934529.2020.1770516. (PMID: 10.1080/10934529.2020.1770516)
Ortíz, D., Castro, L., Turrubiates, F., Milan, J., & Díaz-Barriga, F. (1998). Assessment of the exposure to fluoride in drinking water from Durango, Mexico, using a Geographic Information System. Fluoride, 31(4), 183–187.
Ortíz Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Robles-Rovelo, C. O., Contreras Rodríguez, A. R., & Dávila-Hernández, S. (2022). Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water, 2022(14), 519. https://doi.org/10.3390/w14040519. (PMID: 10.3390/w14040519)
Pérez-Vázquez, F. J., González-Martella, A. D., Fernández-Macias, J. C., Rocha-Amado, O. D., González-Palomo, A. K., Ilizaliturri-Hernández, A. C., & González-MilleDJ, C.-L. (2021). Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. Journal of Trace Elements in Medicine and Biology, 68, 126863. https://doi.org/10.1016/j.jtemb.2021.126863. (PMID: 10.1016/j.jtemb.2021.126863)
Quadri, J. A., Sarwar, S., Sinha, A., Kalaivani, M., Dinda, A. K., Bagga, A., Roy, T. S., Das, T. K., & Shariff, A. (2018). Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study. Human Experimental Toxicology. https://doi.org/10.1177/0960327118755257. (PMID: 10.1177/0960327118755257)
Rehman, F., Siddique, J., Shahab, A., Azeem, T., Ahmad, A. B., Ali, A. N., Riaz, O., Rehman, F., & Rehman, Q. (2022). Hydrochemical appraisal of fluoride contamination in groundwater and human health risk assessment at Isa Khel, Punjab, Pakistan. Environmental Technology and Innovation., 27, 102445. https://doi.org/10.1016/j.eti.2022.102445. (PMID: 10.1016/j.eti.2022.102445)
Reyes-Gómez, M. V., Alarcón-Herrera, M. T., Gutiérrez, M., & López, D. N. (2013). Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant levels, potential sources, and co-occurrence. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-013-1433-4. (PMID: 10.1007/s11270-013-1433-4)
Rocha-Amador, D., Navarro, E. M., Carrizales, L., Morales, R., & Calderon, J. (2007). Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos De Saúde Pública, 23(4), 579–587. https://doi.org/10.1590/S0102-311X2007001600018. (PMID: 10.1590/S0102-311X2007001600018)
Rodríguez-Ríos, R., Aguillón-Robles, A., & Leroy, J. L. (2007). Evolución petrológica y geoquímica de un complejo de domos topacíferos en el Campo Volcánico de San Luis Potosí (México). Revista Mexicana De Ciencias Geológicas, 24(3), 328–343.
Rodríguez, R. C., & Rodríguez-Velázquez, I. (2006). Consecuencias sociales de un desastre inducido, subsidencia. Boletín De La Sociedad Geológica Mexicana, 63(2), 265–269. (PMID: 10.18268/BSGM2006v58n2a10)
Rodríguez, R., Morales, I., Armienta, A., Villanueva, R., & Segovia, N. (2015). Geothermal systems of low temperature in Mexican highlands: Alternative uses and associated risks. Procedia Environmental Sciences., 25, 214–219. (PMID: 10.1016/j.proenv.2015.04.029)
Ruiz, J., Kesler, S. E., Jones, I. M., & Foland, K. A. (1986). Geology and geochemistry of fluorite ore-deposits and associated fluorine-rich igneous rocks from the Sierra Madre Occidental. Mexico: Economic Geology (in press).
Sajil Kumar, P. J. (2017). A proposed method for the quantification of fluoride contamination: Fluoride pollution index (FPI). Geochemical Journal, 4, 1–4.
Savoie, C. B. Y. (2013). Arsenic mobility and compositional variability in high-silica ash flow tuffs. Dissertations and Theses. https://pdxscholar.library.pdx.edu/open_access_etds/1012/ .
Saxena, V. K., & Ahmed, S. (2001). dissolution of fluoride in groundwater: A water-rock interaction study (pp. 1084–1087). Springer.
Schoeder, A. (2010). Análisis de la formación de fallamiento por subsidencia en la zona de Irapuato Gto. Tesis Maestría. UNAM.
Selinus, O. (2005). Essentials of medical geology. Impacts of the natural environment on public health (p. 826). Elsevier Academic Press.
Shimizu, K., Itai, T., & Kusakabe, M. (2006). Ion chromato-graphic determination of fluorine and chlorine in silicaterocks following alkaline fusion. Geostandards and Geoanalytical Research, 30, 121–129. (PMID: 10.1111/j.1751-908X.2006.tb00919.x)
Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284. (PMID: 10.1016/S0883-2927(01)00082-8)
Soto-Rojas, A. E., Ureña-Cirett, J. L., Martínez-Mier, E. A. (2004). A review of the prevalence of dental fluorosis in Mexico. Revista Panamericana de Salud Pública, 15(1), 9–18. https://doi.org/10.1590/s1020-49892004000100003.
Sung, J. (2011). Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in Geumsan County Korea. Environmental Geochemistry and Health, 2, 43–55.
Tang, Q. Q., Du, J., Ma, H. H., Jiang, S. J., & Zhou, X. J. (2008). Fluoride and children’s intelligence: A meta-analysis. Biological Trace Element Research, 126(1–3), 115–120. (PMID: 10.1007/s12011-008-8204-x)
USEPA (U.S. Environmental Protection Agency). (2010). Fluoride: Exposure and Relative Source Contribution Analysis. Office of Water, Washington, DC. EPA 820-R-10-015.
USEPA (U.S. Environmental Protection Agency). (1992a). Guidelines for exposure assessment. U.S. Environmental Protection Agency. Federal Register 57:22888–22938.
Verma, S., Torres-Sánchez, D., Hernández-Martínez, K. R., Malviya, V., Singh, P. K., Torres-Hernández, J. R., & Rivera-Escoto, B. A. (2021). Geochemistry of Eocene felsic volcanic rocks from the Mesa Virgen-Calerilla, Zacatecas, Mexico: Implications for the magma source and tectonic setting. Geological Journal., 56(7), 3771–3790. https://doi.org/10.1002/gj.4133. (PMID: 10.1002/gj.4133) - Contributed Indexing: Keywords: Fluoride exposure risk; Fluoride mobilization; Geothermal aquifer; Groundwater; Volcanic rocks
- الرقم المعرف: Q80VPU408O (Fluorides)
0 (Drinking Water)
0 (Water Pollutants, Chemical)
0 (Minerals) - الموضوع: Date Created: 20221209 Date Completed: 20230602 Latest Revision: 20230624
- الموضوع: 20231215
- الرقم المعرف: 10.1007/s10653-022-01426-2
- الرقم المعرف: 36484881
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.