Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: Oxford University Press Country of Publication: England NLM ID: 101566598 Publication Model: Print Cited Medium: Internet ISSN: 2160-1836 (Electronic) Linking ISSN: 21601836 NLM ISO Abbreviation: G3 (Bethesda) Subsets: MEDLINE
- بيانات النشر:
Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Bethesda, MD : Genetics Society of America, 2011-
- الموضوع:
- نبذة مختصرة :
A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red-green-blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.
(© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.)
- References:
G3 (Bethesda). 2022 Mar 4;12(3):. (PMID: 35100379)
Front Plant Sci. 2019 Oct 11;10:1251. (PMID: 31681364)
PLoS One. 2016 Jul 29;11(7):e0159781. (PMID: 27472222)
Genetics. 2004 Dec;168(4):2383-94. (PMID: 15371347)
Nat Genet. 2012 Jun 17;44(7):825-30. (PMID: 22706313)
Front Genet. 2021 Mar 08;11:592769. (PMID: 33763106)
Plant Genome. 2017 Jul;10(2):. (PMID: 28724075)
Trends Plant Sci. 2018 May;23(5):451-466. (PMID: 29555431)
Theor Appl Genet. 2021 May;134(5):1409-1422. (PMID: 33630103)
Plant J. 2019 May;98(3):555-570. (PMID: 30604470)
Theor Appl Genet. 1996 Nov;93(7):1098-102. (PMID: 24162487)
Front Plant Sci. 2020 Sep 30;11:511768. (PMID: 33101323)
Theor Appl Genet. 2022 Feb;135(2):653-665. (PMID: 34807268)
Trends Plant Sci. 2014 Jan;19(1):52-61. (PMID: 24139902)
BMC Res Notes. 2020 Feb 12;13(1):71. (PMID: 32051026)
Biometrics. 1975 Jun;31(2):423-47. (PMID: 1174616)
Theor Appl Genet. 2014 Mar;127(3):595-607. (PMID: 24337101)
Theor Appl Genet. 2019 Jun;132(6):1705-1720. (PMID: 30778634)
J Exp Bot. 2015 Sep;66(18):5567-80. (PMID: 25922493)
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6679-6684. (PMID: 29891664)
G3 (Bethesda). 2018 Dec 10;8(12):3961-3972. (PMID: 30373914)
Plant Genome. 2021 Jul;14(2):e20102. (PMID: 34009740)
Theor Appl Genet. 2022 Mar;135(3):895-914. (PMID: 34988629)
Genet Res. 2000 Apr;75(2):249-52. (PMID: 10816982)
Gigascience. 2019 Feb 1;8(2):. (PMID: 30535326)
G3 (Bethesda). 2022 Feb 4;12(2):. (PMID: 35100364)
Sci Rep. 2022 May 9;12(1):7571. (PMID: 35534655)
Plant Methods. 2017 Jan 3;13:4. (PMID: 28053649)
Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
G3 (Bethesda). 2016 Sep 08;6(9):2799-808. (PMID: 27402362)
G3 (Bethesda). 2012 Nov;2(11):1427-36. (PMID: 23173094)
Plant Physiol. 2008 Jan;146(1):250-64. (PMID: 17993543)
PLoS Genet. 2017 Jun 23;13(6):e1006841. (PMID: 28644860)
PLoS Genet. 2016 Feb 01;12(2):e1005767. (PMID: 26828793)
Theor Appl Genet. 2020 Nov;133(11):3001-3015. (PMID: 32681289)
G3 (Bethesda). 2021 Feb 05;11(2):jkab035. (PMID: 33847694)
G3 (Bethesda). 2021 Jun 17;11(6):. (PMID: 33822935)
- Contributed Indexing:
Keywords: genomic prediction; high-throughput phenotyping; phenomic prediction
- الموضوع:
Date Created: 20221129 Date Completed: 20230116 Latest Revision: 20230203
- الموضوع:
20250114
- الرقم المعرف:
PMC9836347
- الرقم المعرف:
10.1093/g3journal/jkac294
- الرقم المعرف:
36445027
No Comments.