Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Effects of Ozone Therapy on Chronic Arsenic Poisoning in Rats.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Büyük B;Büyük B; Aydeğer C; Aydeğer C; Öztopuz Ö; Öztopuz Ö; Ovalı MA; Ovalı MA; Makav M; Makav M; Eroğlu HA; Eroğlu HA
- المصدر:
Biological trace element research [Biol Trace Elem Res] 2023 Aug; Vol. 201 (8), pp. 3951-3960. Date of Electronic Publication: 2022 Nov 28.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Humana Press Country of Publication: United States NLM ID: 7911509 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0720 (Electronic) Linking ISSN: 01634984 NLM ISO Abbreviation: Biol Trace Elem Res Subsets: MEDLINE
- بيانات النشر: Original Publication: [London, Clifton, N. J.] Humana Press.
- الموضوع:
- نبذة مختصرة : Arsenic (As) is a toxic metalloid that affects many organs through drinking water. This study aims to examine the efficacy of ozone therapy on chronic arsenic toxicity. Twenty-four male Wistar albino rats were housed in individual cages and grouped as control, As, O
3 , and As + O3. As was applied by adding 5 mg/kg/day in drinking water for 60 days. Ozone therapy was applied at 0.5 mg/kg/day (i.p.) O3 in the last 5 days of the experimental period. Tissues were harvested and analyzed for histopathological injury and apoptotic markers. There was no significant difference between the As + O3 and O3 groups (p = 0.186 and p = 0.599) for light microscopic criteria: inflammatory cell infiltration and hydropic degeneration in liver tissue.In TUNEL assessments, similar outcomes were obtained in the control and As + O3 groups. A statistically significant increase was observed in p53 and Caspase 3 (Casp-3) expression levels in the As group compared to the O3 and As + O3 groups. There was no significant difference between the As + O3 and O3 groups on peritubular hemorrhage and desquamation parameters in kidneys (p = 0.147 and p = 0.094). The KIM-1 expression level was significantly increased in the As group compared to the As + O3 group (p = 0.01), and the Casp-3 expression level was not significantly changed in the O3 group compared to the As + O3 group (p = 0.59). In conclusion, it is determined that ozone therapy has ameliorative effects on the microscopic injury of liver and kidney tissues. In addition to microscopic improvement, KIM-1 gene expression levels were ameliorated in the kidneys. The apoptotic cell counts and the Casp-3 and p53 gene expression levels were decreased by O3 administration. Thus, ozone therapy can be a treatment choice for As toxicity.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Rao CV, Pal S, Mohammed A et al (2017) Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 8(34):57605–57621. https://doi.org/10.18632/ONCOTARGET.17745. (PMID: 10.18632/ONCOTARGET.177455593671)
Gupta VK, Singh S, Agrawal A, et al (2015) Phytochemicals mediated remediation of neurotoxicity induced by heavy metals. Biochem Res Int 2015. https://doi.org/10.1155/2015/534769.
Kumar A, Khushboo PR, Sharma B (2020) Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol Trace Elem Res 196:654–661. https://doi.org/10.1007/S12011-019-01957-3. (PMID: 10.1007/S12011-019-01957-3)
Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70. https://doi.org/10.3389/FCHEM.2017.00070/BIBTEX. (PMID: 10.3389/FCHEM.2017.00070/BIBTEX5641569)
Mandal P (2017) An insight of environmental contamination of arsenic on animal health. Emerg Contam 3:17–22. https://doi.org/10.1016/J.EMCON.2017.01.004. (PMID: 10.1016/J.EMCON.2017.01.004)
Smeester L, Fry RC (2018) Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Curr Environ Health Rep 5:134–144. https://doi.org/10.1007/S40572-018-0184-1. (PMID: 10.1007/S40572-018-0184-1)
Monteiro De Oliveira EC, Caixeta ES, Santos VSV, Pereira BB (2021) Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. J Toxicol Environ Health B Crit Rev 24:119–135. https://doi.org/10.1080/10937404.2021.1898504. (PMID: 10.1080/10937404.2021.1898504)
World Health Organization (WHO) (2021) Guidelines for drinking-water quality, Fourth Edition. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf . Accessed 18 April 2022. http://www.who.int . Accessed 31 Oct 2022.
Naujokas MF, Anderson B, Ahsan H et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302. https://doi.org/10.1289/EHP.1205875. (PMID: 10.1289/EHP.12058753621177)
Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int. https://doi.org/10.1155/2014/640754. (PMID: 10.1155/2014/6407544182079)
Şahinkaya S, Kalıpcı E, Öztürk M et al (2013) As (III)’ün As (V)’e Ultrasonik Oksidasyonu. Nevşehir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2(1):103–108.
Prakash S, Verma AK (2021) Arsenic It’s toxicity and impact on human health. Int J Biol Innov 03(01):38–47. https://doi.org/10.46505/IJBI.2021.3102. (PMID: 10.46505/IJBI.2021.3102)
Nurchi VM, Djordjevic AB, Crisponi G, et al (2020) Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10. https://doi.org/10.3390/BIOM10020235.
Jain N, Chandramani S (2018) Arsenic poisoning- An overview. Indian J Med Specialities 9:143–145. https://doi.org/10.1016/J.INJMS.2018.04.006. (PMID: 10.1016/J.INJMS.2018.04.006)
Rahaman MS, Rahman MM, Mise N, et al (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289. https://doi.org/10.1016/J.ENVPOL.2021.117940.
Zeng J, Lu J (2018) Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol 56:235–241. https://doi.org/10.1016/J.INTIMP.2018.01.040. (PMID: 10.1016/J.INTIMP.2018.01.040)
Paldir E, Eroglu HA (2021) Therapeutic potential of ozone and L-carnitine combined administrations against experimentally-induced acetaminophen. Plant Sci 31:981–987. https://doi.org/10.36899/JAPS.2021.4.0294. (PMID: 10.36899/JAPS.2021.4.0294)
Caliskan B, Guven A, Ozler M et al (2011) Ozone therapy prevents renal inflammation and fibrosis in a rat model of acute pyelonephritis 71:473–480. https://doi.org/10.3109/00365513.2011.587022. (PMID: 10.3109/00365513.2011.587022)
Bilge A, Tüysüz M, Öztürk Ö et al (2019) The investigation of the effect of ozone therapy on gout in experimental rat models 25:245–249. https://doi.org/10.9775/kvfd.2018.20793. (PMID: 10.9775/kvfd.2018.20793)
Adali Y, Eroǧlu HA, Makav M, Guvendi GF (2019) Efficacy of ozone and selenium therapy for alcoholic liver injury: an experimental model. In Vivo (Brooklyn) 33:763–769. https://doi.org/10.21873/INVIVO.11537. (PMID: 10.21873/INVIVO.11537)
Bocci VA (2006) Scientific and medical aspects of ozone therapy. State of the Art. Arch Med Res 37:425–435. https://doi.org/10.1016/J.ARCMED.2005.08.006. (PMID: 10.1016/J.ARCMED.2005.08.006)
Tezcan AH, Ozturk O, Ustebay S et al (2018) The beneficial effects of ozone therapy in acetaminophen-induced hepatotoxicity in mice. Pharmacol Rep 70:340–345. https://doi.org/10.1016/J.PHAREP.2017.11.003. (PMID: 10.1016/J.PHAREP.2017.11.003)
Tapia SA, Grigorio MS (2014) Ozone therapy and its scientific foundations. Биopaдикaлы и aнтиoкcидaнты 1(1):10–33.
Scassellati C, Galoforo AC, Bonvicini C, et al (2020) Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 63. https://doi.org/10.1016/J.ARR.2020.101138.
Chen Z, Liu X, Yu G et al (2016) Ozone therapy ameliorates tubulointerstitial inflammation by regulating TLR4 in adenine-induced CKD rats. Ren Fail 38:822–830. https://doi.org/10.3109/0886022X.2016.1143757. (PMID: 10.3109/0886022X.2016.1143757)
Paulesu L, Luzzi E, Bocci E (1991) Studies on the biological effects of ozone: 2. Induction of tumor necrosis factor (TNF-alpha) on human leucocytes. Lymphokine Cytokine Res 10(5):409–412.
Bocci V, Paulesu L (1990) Studies on the biological effects of ozone 1. Induction of interferon gamma on human leucocytes. Haematologica 75(6):510–515.
Bocci V (2006) Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol 216:493–504. https://doi.org/10.1016/J.TAAP.2006.06.009. (PMID: 10.1016/J.TAAP.2006.06.009)
Chen H, Xing B, Liu X et al (2008) Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch Med Res 39:169–178. https://doi.org/10.1016/J.ARCMED.2007.09.005. (PMID: 10.1016/J.ARCMED.2007.09.005)
Bashir S, Sharma Y, Irshad M et al (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217:63–70. https://doi.org/10.1016/J.TOX.2005.08.023. (PMID: 10.1016/J.TOX.2005.08.023)
Turk E, Kandemir FM, Yildirim S et al (2019) Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol Trace Elem Res 189:95–108. https://doi.org/10.1007/S12011-018-1443-6. (PMID: 10.1007/S12011-018-1443-6)
Ogun M, Ozcan A, Karaman M et al (2016) Oleuropein ameliorates arsenic induced oxidative stress in mice. J Trace Elem Med Biol 36:1–6. https://doi.org/10.1016/J.JTEMB.2016.03.006. (PMID: 10.1016/J.JTEMB.2016.03.006)
Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. https://doi.org/10.1016/S0378-4274(02)00084-X. (PMID: 10.1016/S0378-4274(02)00084-X)
Eroğlu HA, Makav M, Findik Guvendi̇ G et al (2020) Ozone vs melatonin: the therapeutic effects in alcoholic liver disease. J Harran Univ Med Fac 17:133–139. https://doi.org/10.35440/HUTFD.649302. (PMID: 10.35440/HUTFD.649302)
Büyük B, Karakoç E (2019) Effects of thiopental in cold ischemia in liver transplantation: an experimental study. J Surg Med 3:143–148. https://doi.org/10.28982/JOSAM.460075. (PMID: 10.28982/JOSAM.460075)
Öztopuz Ö, Türkön H, Şehitoğlu MH et al (2019) Hyperbaric oxygen treatment ameliorates gentamicin-induced nephrotoxicity and expression of kidney injury molecule 1 in the rat model. Undersea Hyperb Med 46:125–133. (PMID: 10.22462/04.06.2019.5)
Büyük B, Demirci T, Adalı Y et al (2020) Can amniotic fluid be an alternative organ preservation solution for cold renal storage? Revista de nefrologia, dialisis y trasplante 40:14–24.
Mochizuki H (2019) Arsenic neurotoxicity in humans. Int J Mol Sci 20(3418):3418. https://doi.org/10.3390/IJMS20143418. (PMID: 10.3390/IJMS201434186678206)
Platanias LC (2009) Biological responses to arsenic compounds. J Biol Chem 284:18583–18587. https://doi.org/10.1074/JBC.R900003200. (PMID: 10.1074/JBC.R9000032002707240)
Nandi D, Patra RC, Swarup D (2005) Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats. Toxicology 211:26–35. https://doi.org/10.1016/J.TOX.2005.02.013. (PMID: 10.1016/J.TOX.2005.02.013)
Kokilavani V, Devi MA, Sivarajan K, Panneerselvam C (2005) Combined efficacies of DL-alpha-lipoic acid and meso 2,3 dimercaptosuccinic acid against arsenic induced toxicity in antioxidant systems of rats. Toxicol Lett 160:1–7. https://doi.org/10.1016/J.TOXLET.2005.05.018. (PMID: 10.1016/J.TOXLET.2005.05.018)
Güvendi GF, Eroğlu HA, Makav M et al (2020) Selenium or ozone: effects on liver injury caused by experimental iron overload. Life Sci 262:118558. https://doi.org/10.1016/J.LFS.2020.118558. (PMID: 10.1016/J.LFS.2020.118558)
Erken HA, Genç O, Erken G et al (2015) Ozone partially prevents diabetic neuropathy in rats. Exp Clin Endocrinol Diabetes 123:101–105. https://doi.org/10.1055/S-0034-1389954. (PMID: 10.1055/S-0034-1389954)
Milnerowicz H, Śliwińska-Mossoń M, Sobiech KA (2017) The effect of ozone on the expression of metallothionein in tissues of rats chronically exposed to cadmium. Environ Toxicol Pharmacol 52:27–37. https://doi.org/10.1016/j.etap.2017.03.010. (PMID: 10.1016/j.etap.2017.03.010)
Gultekin FA, Bakkal BH, Guven B et al (2013) Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J Radiat Res 54:36. https://doi.org/10.1093/JRR/RRS073. (PMID: 10.1093/JRR/RRS073)
Güçlü A, Erken HA, Erken G et al (2016) The effects of ozone therapy on caspase pathways, TNF-α, and HIF-1α in diabetic nephropathy. Int Urol Nephrol 48:441–450. https://doi.org/10.1007/S11255-015-1169-8. (PMID: 10.1007/S11255-015-1169-8)
Ozturk O, Eroglu HA, Ustebay S et al (2018) An experimental study on the preventive effects of N-acetyl cysteine and ozone treatment against contrast-induced nephropathy. Acta Cir Bras 33:508–517. https://doi.org/10.1590/S0102-865020180060000005. (PMID: 10.1590/S0102-865020180060000005)
Gul H, Uysal B, Cakir E et al (2012) The protective effects of ozone therapy in a rat model of acetaminophen-induced liver injury. Environ Toxicol Pharmacol 34:81–86. https://doi.org/10.1016/J.ETAP.2012.02.006. (PMID: 10.1016/J.ETAP.2012.02.006)
van Timmeren MM, van den Heuvel MC, Bailly V et al (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212:209–217. https://doi.org/10.1002/PATH.2175. (PMID: 10.1002/PATH.2175)
Jiang M, Qi L, Li L, Li Y (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 6(6):1 11. https://doi.org/10.1038/s41420-020-00349-0. (PMID: 10.1038/s41420-020-00349-0)
Khalilzadeh B, Charoudeh HN, Shadjou N et al (2016) Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: its application during stem cell differentiation. Sens Actuators B Chem 231:561–575. https://doi.org/10.1016/J.SNB.2016.03.043. (PMID: 10.1016/J.SNB.2016.03.043)
Duffy MJ, Synnott NC, O’Grady S, Crown J (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67. https://doi.org/10.1016/J.SEMCANCER.2020.07.005. (PMID: 10.1016/J.SEMCANCER.2020.07.005)
Hafner A, Bulyk ML, Jambhekar A, Lahav G (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20:199–210. https://doi.org/10.1038/S41580-019-0110-X. (PMID: 10.1038/S41580-019-0110-X) - Contributed Indexing: Keywords: Arsenic poisoning; Experimental; KIM-1; Liver injury; Ozone; Renal injury
- الرقم المعرف: 66H7ZZK23N (Ozone)
N712M78A8G (Arsenic)
0 (Drinking Water)
0 (Tumor Suppressor Protein p53) - الموضوع: Date Created: 20221127 Date Completed: 20230621 Latest Revision: 20230621
- الموضوع: 20230621
- الرقم المعرف: 10.1007/s12011-022-03486-y
- الرقم المعرف: 36437433
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.