Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Physiological concentrations of glucocorticoids induce pathological DNA double-strand breaks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 9607379 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2443 (Electronic) Linking ISSN: 13569597 NLM ISO Abbreviation: Genes Cells Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Oxford, UK : Blackwell Science Ltd., 1996-
    • الموضوع:
    • نبذة مختصرة :
      Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G 1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G 1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.
      (© 2022 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.)
    • References:
      Akagawa, R., Trinh, H. T., Saha, L. K., Tsuda, M., Hirota, K., Yamada, S., Shibata, A., Kanemaki, M. T., Nakada, S., Takeda, S., & Sasanuma, H. (2020). UBC13-mediated ubiquitin signaling promotes removal of blocking adducts from DNA double-Strand breaks. IScience, 23(4), 101027. https://doi.org/10.1016/j.isci.2020.101027.
      Al Mahmud, M. R., Ishii, K., Bernal-Lozano, C., Delgado-Sainz, I., Toi, M., Akamatsu, S., Fukumoto, M., Watanabe, M., Takeda, S., Ledesma, F. C., & Sasanuma, H. (2020). TDP2 suppresses genomic instability induced by androgens in the epithelial cells of prostate glands. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 25(7), 450-465. https://doi.org/10.1111/gtc.12770.
      Álvarez-Quilón, A., Serrano-Benítez, A., Ariel Lieberman, J., Quintero, C., Sánchez-Gutiérrez, D., Escudero, L. M., & Cortés-Ledesma, F. (2014). ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nature Communications, 5, 3347. https://doi.org/10.1038/ncomms4347.
      Austin, C. A., Lee, K. C., Swan, R. L., Khazeem, M. M., Manville, C. M., Cridland, P., Treumann, A., Porter, A., Morris, N. J., & Cowell, I. G. (2018). TOP2B: The first thirty years. International Journal of Molecular Sciences, 19(9), 2765. https://doi.org/10.3390/ijms19092765.
      Boija, A., Klein, I. A., Sabari, B. R., Dall'Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M., Abraham, B. J., Afeyan, L. N., Guo, Y. E., Rimel, J. K., Fant, C. B., Schuijers, J., Lee, T. I., Taatjes, D. J., & Young, R. A. (2018). Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175(7), 1842-1855.e16. https://doi.org/10.1016/j.cell.2018.10.042.
      Buick, J. K., Moffat, I., Williams, A., Swartz, C. D., Recio, L., Hyduke, D. R., Li, H. H., Fornace, A. J., Jr., Aubrecht, J., & Yauk, C. L. (2015). Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells. Environmental and Molecular Mutagenesis, 56(6), 520-534. https://doi.org/10.1002/em.21940.
      Bunch, H. (2017). RNA polymerase II pausing and transcriptional regulation of the HSP70 expression. European Journal of Cell Biology, 96(8), 739-745. https://doi.org/10.1016/j.ejcb.2017.09.003.
      Bunch, H., Zheng, X., Burkholder, A., Dillon, S. T., Motola, S., Birrane, G., Ebmeier, C. C., Levine, S., Fargo, D., Hu, G., Taatjes, D. J., & Calderwood, S. K. (2014). TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nature Structural & Molecular Biology, 21(10), 876-883. https://doi.org/10.1038/nsmb.2878.
      Bunch, H., Lawney, B. P., Lin, Y.-F., Asaithamby, A., Murshid, A., Wang, Y. E., Chen, B. P., & Calderwood, S. K. (2015). Transcriptional elongation requires DNA break-induced signalling. Nature Communications, 6, 10191. https://doi.org/10.1038/ncomms10191.
      Cain, D. W., & Cidlowski, J. A. (2020). After 62 years of regulating immunity, dexamethasone meets COVID-19. Nature Reviews. Immunology, 20(10), 587-588. https://doi.org/10.1038/s41577-020-00421-x.
      Calderwood, S. K. (2016). A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription, 7(3), 75-83. https://doi.org/10.1080/21541264.2016.1181142.
      Canela, A., Maman, Y., Huang, S.-Y. N., Wutz, G., Tang, W., Zagnoli-Vieira, G., Callen, E., Wong, N., Day, A., Peters, J. M., Caldecott, K. W., Pommier, Y., & Nussenzweig, A. (2019). Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Molecular Cell, 75(2), 252-266.e8. https://doi.org/10.1016/j.molcel.2019.04.030.
      Chappell, C. (2002). Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. The EMBO Journal, 21(11), 2827-2832. https://doi.org/10.1093/emboj/21.11.2827.
      Fellows, M. D., & O'Donovan, M. R. (2010). Etoposide, cadmium chloride, benzo[a]pyrene, cyclophosphamide and colchicine tested in the in vitro mammalian cell micronucleus test (MNvit) in the presence and absence of cytokinesis block using L5178Y mouse lymphoma cells and 2-aminoanthracene tested in MNvit in the absence of cytokinesis block using TK6 cells at AstraZeneca UK, in support of OECD draft test guideline 487. Mutation Research, 702(2), 163-170. https://doi.org/10.1016/j.mrgentox.2009.09.003.
      Ghosh, D., & Raghavan, S. C. (2021). Nonhomologous end joining: New accessory factors fine tune the machinery. Trends in Genetics: TIG, 37(6), 582-599. https://doi.org/10.1016/j.tig.2021.03.001.
      Gollapudi, B. B., White, P. A., & Honma, M. (2019). The IWGT in vitro mammalian cell gene mutation (MCGM) assays working group-introductory remarks & consensus statements. Mutation Research, 848, 403061. https://doi.org/10.1016/j.mrgentox.2019.05.017.
      Gómez-Herreros, F., Schuurs-Hoeijmakers, J. H. M., McCormack, M., Greally, M. T., Rulten, S., Romero-Granados, R., Counihan, T. J., Chaila, E., SCJ, E., Delanty, N., Cortes-Ledesma, F., de Brouwer, A. P., Cavalleri, G. L., El-khamisy, S. F., de Vries, B. B., & Caldecott, K. W. (2014). TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nature Genetics, 46(5), 516-521. https://doi.org/10.1038/ng.2929.
      Goodwin, J. F., Kothari, V., Drake, J. M., Zhao, S., Dylgjeri, E., Dean, J. L., Schiewer, M. J., McNair, C., Jones, J. K., Aytes, A., Magee, M. S., Snook, A. E., Zhu, Z., Den RB, B. R. C., Gomella, L. G., Graham, N. A., Vashisht, A. A., Wohlschlegel, J. A., Graeber, T. G., … Knudsen, K. E. (2015). DNA-PKcs-mediated transcriptional regulation drives prostate cancer progression and metastasis. Cancer Cell, 28(1), 97-113. https://doi.org/10.1016/j.ccell.2015.06.004.
      Guess, A., Agrawal, S., Wei, C.-C., Ransom, R. F., Benndorf, R., & Smoyer, W. E. (2010). Dose- and time-dependent glucocorticoid receptor signaling in podocytes. American Journal of Physiology. Renal Physiology, 299(4), F845-F853. https://doi.org/10.1152/ajprenal.00161.2010.
      Haffner, M. C., Aryee, M. J., Toubaji, A., Esopi, D. M., Albadine, R., Gurel, B., Isaacs, W. B., Bova, G. S., Liu, W., Xu, J., Meeker, A. K., Netto, G., AMD, M., Nelson, W. G., & Yegnasubramanian, S. (2010). Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 42(8), 668-675. https://doi.org/10.1038/ng.613.
      Heming, N., Sivanandamoorthy, S., Meng, P., Bounab, R., & Annane, D. (2018). Immune effects of corticosteroids in sepsis. Frontiers in Immunology, 9, 1736. https://doi.org/10.3389/fimmu.2018.01736.
      Hoa, N. N., Kobayashi, J., Omura, M., Hirakawa, M., Yang, S.-H., Komatsu, K., Paull, T. T., Takeda, S., & Sasanuma, H. (2015). BRCA1 and CtIP are both required to recruit Dna2 at double-Strand breaks in homologous recombination. PLoS One, 10(4), e0124495. https://doi.org/10.1371/journal.pone.0124495.
      Hoa, N. N., Shimizu, T., Zhou, Z. W., Wang, Z.-Q., Deshpande, R. A., Paull, T. T., Akter, S., Tsuda, M., Furuta, R., Tsutsui, K., Takeda, S., & Sasanuma, H. (2016). Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Molecular Cell, 64(5), 1010. https://doi.org/10.1016/j.molcel.2016.11.028.
      Huang, W., Kalhorn, T. F., Baillie, M., Shen, D. D., & Thummel, K. E. (2007). Determination of free and total cortisol in plasma and urine by liquid chromatography-tandem mass spectrometry. Therapeutic Drug Monitoring, 29(2), 215-224. https://doi.org/10.1097/FTD.0b013e31803d14c0.
      Itou, J., Takahashi, R., Sasanuma, H., Tsuda, M., Morimoto, S., Matsumoto, Y., Ishii, T., Sato, F., Takeda, S., & Toi, M. (2020). Estrogen induces mammary ductal dysplasia via the upregulation of Myc expression in a DNA-repair-deficient condition. IScience, 23(2), 100821. https://doi.org/10.1016/j.isci.2020.100821.
      Jao, C. Y., & Salic, A. (2008). Exploring RNA transcription and turnover in vivo by using click chemistry. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15779-15784. https://doi.org/10.1073/pnas.0808480105.
      Joshi, R. S., Piña, B., & Roca, J. (2012). Topoisomerase II is required for the production of long pol II gene transcripts in yeast. Nucleic Acids Research, 40(16), 7907-7915. https://doi.org/10.1093/nar/gks626.
      Ju, B.-G., Lunyak, V. V., Perissi, V., Garcia-Bassets, I., Rose, D. W., Glass, C. K., & Rosenfeld, M. G. (2006). A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. New York, N.Y: Science (Vol. 312, pp. 1798-1802). https://doi.org/10.1126/science.1127196.
      Karras, G. I., Yi, S., Sahni, N., Fischer, M., Xie, J., Vidal, M., D'Andrea, A. D., Whitesell, L., & Lindquist, S. (2017). HSP90 shapes the consequences of human genetic variation. Cell, 168(5), 856-866.e12. https://doi.org/10.1016/j.cell.2017.01.023.
      King, I. F., Yandava, C. N., Mabb, A. M., Hsiao, J. S., Huang, H.-S., Pearson, B. L., Calabrese, J. M., Starmer, J., Parker, J. S., Magnuson, T., Chamberlain, S. J., Philpot, B. D., & Zylka, M. J. (2013). Topoisomerases facilitate transcription of long genes linked to autism. Nature, 501(7465), 58-62. https://doi.org/10.1038/nature12504.
      Kouzine, F., Levens, D., & Baranello, L. (2014). DNA topology and transcription. Nucleus (Austin, Tex.), 5(3), 195-202. https://doi.org/10.4161/nucl.28909.
      Lai, C.-H., Park, K.-S., Lee, D.-H., Alberobello, A. T., Raffeld, M., Pierobon, M., Pin, E., Petricoin, E. F., Wang, Y., & Giaccone, G. (2014). HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer. Oncogene, 33(40), 4867-4876. https://doi.org/10.1038/onc.2013.439.
      Ledesma, F. C., El Khamisy, S. F., Zuma, M. C., Osborn, K., & Caldecott, K. W. (2009). A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature, 461(7264), 674-678. https://doi.org/10.1038/nature08444.
      Li, C., Sun, S.-Y., Khuri, F. R., & Li, R. (2011). Pleiotropic functions of EAPII/TTRAP/TDP2: Cancer development, chemoresistance and beyond. Cell Cycle (Georgetown, Tex.), 10(19), 3274-3283. https://doi.org/10.4161/cc.10.19.17763.
      Li, H.-H., Chen, R., Hyduke, D. R., Williams, A., Frötschl, R., Ellinger-Ziegelbauer, H., O'Lone, R., Yauk, C. L., Aubrecht, J., & Fornace, A. J. (2017). Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10881-E10889. https://doi.org/10.1073/pnas.1714109114.
      Madabhushi, R. (2018). The roles of DNA topoisomerase IIβ in transcription. International Journal of Molecular Sciences, 19(7), 1917. https://doi.org/10.3390/ijms19071917.
      Madabhushi, R., Gao, F., Pfenning, A. R., Pan, L., Yamakawa, S., Seo, J., Rueda, R., Phan, T. X., Yamakawa, H., Pao, P. C., Stott, R. T., Gjoneska, E., Nott, A., Cho, S., Kellis, M., & Tsai, L.-H. (2015). Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell, 161(7), 1592-1605. https://doi.org/10.1016/j.cell.2015.05.032.
      McKinnon, P. J. (2016). Topoisomerases and the regulation of neural function. Nature Reviews Neuroscience, 17(11), 673-679. https://doi.org/10.1038/nrn.2016.101.
      Miyaji, M., Furuta, R., Hosoya, O., Sano, K., Hara, N., Kuwano, R., Kang, J., Tateno, M., Tsutsui, K. M., & Tsutsui, K. (2020). Topoisomerase IIβ targets DNA crossovers formed between distant homologous sites to induce chromatin opening. Scientific Reports, 10(1), 18550. https://doi.org/10.1038/s41598-020-75004-w.
      Morgan, B. P., Swick, A. G., Hargrove, D. M., LaFlamme, J. A., Moynihan, M. S., Carroll, R. S., Martin, K. A., Lee, E., Decosta, D., & Bordner, J. (2002). Discovery of potent, nonsteroidal, and highly selective glucocorticoid receptor antagonists. Journal of Medicinal Chemistry, 45(12), 2417-2424. https://doi.org/10.1021/jm0105530.
      Morimoto, S., Tsuda, M., Bunch, H., Sasanuma, H., Austin, C., & Takeda, S. (2019). Type II DNA topoisomerases cause spontaneous double-Strand breaks in genomic DNA. Genes, 10(11), 868. https://doi.org/10.3390/genes10110868.
      Naito, Y., Hino, K., Bono, H., & Ui-Tei, K. (2015). CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31(7), 1120-1123. https://doi.org/10.1093/bioinformatics/btu743.
      Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews. Cancer, 9(5), 338-350. https://doi.org/10.1038/nrc2607.
      Pommier, Y., Sun, Y., Huang, S. N., & Nitiss, J. L. (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews Molecular Cell Biology, 17(11), 703-721. https://doi.org/10.1038/nrm.2016.111.
      Pommier, Y., Nussenzweig, A., Takeda, S., & Austin, C. (2022). Human topoisomerases and their roles in genome stability and organization. Nature Reviews. Molecular Cell Biology, 23(6), 407-427. https://doi.org/10.1038/s41580-022-00452-3.
      Puc, J., Aggarwal, A. K., & Rosenfeld, M. G. (2017). Physiological functions of programmed DNA breaks in signal-induced transcription. Nature Reviews. Molecular Cell Biology, 18(8), 471-476. https://doi.org/10.1038/nrm.2017.43.
      Robins, P., & Lindahl, T. (1996). DNA ligase IV from HeLa cell nuclei. Journal of Biological Chemistry, 271(39), 24257-24261. https://doi.org/10.1074/jbc.271.39.24257.
      Russell, G., & Lightman, S. (2019). The human stress response. Nature Reviews. Endocrinology, 15(9), 525-534. https://doi.org/10.1038/s41574-019-0228-0.
      Sano, K., Miyaji-Yamaguchi, M., Tsutsui, K. M., & Tsutsui, K. (2008). Topoisomerase IIbeta activates a subset of neuronal genes that are repressed in AT-rich genomic environment. PLoS One, 3(12), e4103. https://doi.org/10.1371/journal.pone.0004103.
      Sasanuma, H., Tsuda, M., Morimoto, S., Saha, L. K., Rahman, M. M., Kiyooka, Y., Fujiike, H., Cherniack, A. D., Itou, J., Moreu, E. C., Toi, M., Nakada, S., Tanaka, H., Tsutsui, K., Yamada, S., Nussenzweig, A., & Takeda, S. (2018). BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proceedings of the National Academy of Sciences, 115(45), E10642-E10651. https://doi.org/10.1073/pnas.1803177115.
      Scheer, F. A. J. L., Van Paassen, B., Van Montfrans, G. A., Fliers, E., Van Someren, E. J. W., Van Heerikhuize, J. J., & Buijs, R. M. (2002). Human basal cortisol levels are increased in hospital compared to home setting. Neuroscience Letters, 333(2), 79-82. https://doi.org/10.1016/S0304-3940(02)00988-6.
      Sciascia, N., Wu, W., Zong, D., Sun, Y., Wong, N., John, S., Wangsa, D., Ried, T., Bunting, S. F., Pommier, Y., & Nussenzweig, A. (2020). Suppressing proteasome mediated processing of topoisomerase II DNA-protein complexes preserves genome integrity. eLife, 9, e53. https://doi.org/10.7554/eLife.53447.
      Singh, H., Singh, J. R., Dhillon, V. S., Bali, D., & Paul, H. (1994). In vitro and in vivo genotoxicity evaluation of hormonal drugs II. Dexamethasone. Mutation Research, 308(1), 89-97. https://doi.org/10.1016/0027-5107(94)90201-1.
      Spoorenberg, S. M. C., Deneer, V. H. M., Grutters, J. C., Pulles, A. E., Voorn, G. P. P., Rijkers, G. T., WJW, B., & van de Garde, E. M. W. (2014). Pharmacokinetics of oral vs. intravenous dexamethasone in patients hospitalized with community-acquired pneumonia. British Journal of Clinical Pharmacology, 78(1), 78-83. https://doi.org/10.1111/bcp.12295.
      Stortz, M., Pecci, A., Presman, D. M., & Levi, V. (2020). Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 18(1), 59. https://doi.org/10.1186/s12915-020-00788-2.
      Strehl, C., Ehlers, L., Gaber, T., & Buttgereit, F. (2019). Glucocorticoids-all-Rounders tackling the versatile players of the immune system. Frontiers in Immunology, 10, 1744. https://doi.org/10.3389/fimmu.2019.01744.
      Tubbs, A., & Nussenzweig, A. (2017). Endogenous DNA damage as a source of genomic instability in cancer. Cell, 168(4), 644-656. https://doi.org/10.1016/j.cell.2017.01.002.
      Weijtens, O., Schoemaker, R. C., Cohen, A. F., Romijn, F. P., Lentjes, E. G., van Rooij, J., & van Meurs, J. C. (1998). Dexamethasone concentration in vitreous and serum after oral administration. American Journal of Ophthalmology, 125(5), 673-679. https://doi.org/10.1016/s0002-9394(98)00003-8.
      Wong, R. H. F., Chang, I., Hudak, C. S. S., Hyun, S., Kwan, H.-Y., & Sul, H. S. (2009). A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell, 136(6), 1056-1072. https://doi.org/10.1016/j.cell.2008.12.040.
      Yauk, C. L., Buick, J. K., Williams, A., Swartz, C. D., Recio, L., Li, H.-H., Fornace, A. J., Jr., Thomson, E. M., & Aubrecht, J. (2016). Application of the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-genotoxic chemicals in human TK6 cells in the presence of rat liver S9. Environmental and Molecular Mutagenesis, 57(4), 243-260. https://doi.org/10.1002/em.22004.
      Yu, T., MacPhail, S. H., Banáth, J. P., Klokov, D., & Olive, P. L. (2006). Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair, 5(8), 935-946. https://doi.org/10.1016/j.dnarep.2006.05.040.
    • Grant Information:
      19H04267 JSPS KAKENHI; 19K20449 JSPS KAKENHI; 20KK0186 JSPS KAKENHI; 18H03992 JSPS KAKENHI; 16H06306 JSPS KAKENHI; 20K16280 JSPS KAKENHI; 20K21525 JSPS KAKENHI; 21K07148 JSPS KAKENHI; 16H12595 JSPS KAKENHI
    • Contributed Indexing:
      Keywords: DNA topoisomerase II; DSB repair; TDP2/EAPII/TTRAP; cortisol; dexamethasone; early transcriptional response; glucocorticoid; signal-induced transcription
    • الرقم المعرف:
      0 (Transcription Factors)
      0 (DNA-Binding Proteins)
      0 (Glucocorticoids)
      0 (Nuclear Proteins)
      WI4X0X7BPJ (Hydrocortisone)
      EC 3.1.4.- (Phosphoric Diester Hydrolases)
      EC 5.99.1.3 (DNA Topoisomerases, Type II)
      9007-49-2 (DNA)
    • الموضوع:
      Date Created: 20221123 Date Completed: 20230118 Latest Revision: 20240307
    • الموضوع:
      20240307
    • الرقم المعرف:
      10.1111/gtc.12993
    • الرقم المعرف:
      36415926