Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

GeoBioMed perspectives on kidney stone recurrence from the reactive surface area of SWL-derived particles.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Shock wave lithotripsy (SWL) is an effective and commonly applied clinical treatment for human kidney stones. Yet the success of SWL is counterbalanced by the risk of retained fragments causing recurrent stone formation, which may require retreatment. This study has applied GeoBioMed experimental and analytical approaches to determine the size frequency distribution, fracture patterns, and reactive surface area of SWL-derived particles within the context of their original crystal growth structure (crystalline architecture) as revealed by confocal autofluorescence (CAF) and super-resolution autofluorescence (SRAF) microscopy. Multiple calcium oxalate (CaOx) stones were removed from a Mayo Clinic patient using standard percutaneous nephrolithotomy (PCNL) and shock pulse lithotripsy (SPL). This produced approximately 4-12 mm-diameter PCNL-derived fragments that were experimentally treated ex vivo with SWL to form hundreds of smaller particles. Fractures propagated through the crystalline architecture of PCNL-derived fragments in a variety of geometric orientations to form rectangular, pointed, concentrically spalled, and irregular SWL-derived particles. Size frequency distributions ranged from fine silt (4-8 μm) to very fine pebbles (2-4 mm), according to the Wentworth grain size scale, with a mean size of fine sand (125-250 μm). Importantly, these SWL-derived particles are smaller than the 3-4 mm-diameter detection limit of clinical computed tomography (CT) techniques and can be retained on internal kidney membrane surfaces. This creates clinically undetectable crystallization seed points with extremely high reactive surface areas, which dramatically enhance the multiple events of crystallization and dissolution (diagenetic phase transitions) that may lead to the high rates of CaOx kidney stone recurrence after SWL treatment.
      (© 2022. The Author(s).)
    • References:
      J Endourol. 2006 Aug;20(8):537-41. (PMID: 16903810)
      Nat Rev Urol. 2021 Jul;18(7):404-432. (PMID: 34031587)
      J Urol. 2013 Jun;189(6):2350-6. (PMID: 23142201)
      Ultrasound Med Biol. 1991;17(3):239-43. (PMID: 1887509)
      NDT Plus. 2010 Aug;3(4):405-6. (PMID: 25949443)
      J Acoust Soc Am. 2002 Oct;112(4):1265-8. (PMID: 12398432)
      J Urol. 2006 Sep;176(3):1020-2. (PMID: 16890682)
      J Urol. 1996 Sep;156(3):903-5; discussion 906. (PMID: 8709359)
      J Urol. 1996 Apr;155(4):1186-90. (PMID: 8632527)
      Ultrasound Med Biol. 2001 May;27(5):683-93. (PMID: 11397533)
      Kidney360. 2020 Dec 23;2(2):298-311. (PMID: 35373025)
      BMJ. 2007 Mar 3;334(7591):468-72. (PMID: 17332586)
      J Urol. 2017 Apr;197(4):1084-1089. (PMID: 27746283)
      BMC Urol. 2006 Jul 05;6:16. (PMID: 16822299)
      Mol Med. 2002 Apr;8(4):200-9. (PMID: 12149569)
      Int Braz J Urol. 2014 Jan-Feb;40(1):23-9. (PMID: 24642147)
      Urol Res. 2005 Dec;33(6):429-34. (PMID: 16133577)
      Ultrasound Med Biol. 1994;20(8):803-10. (PMID: 7863569)
      Nat Rev Nephrol. 2020 Dec;16(12):736-746. (PMID: 32753740)
      Kidney Int. 2006 Jul;70(1):71-8. (PMID: 16641926)
      Urolithiasis. 2020 Apr;48(2):137-149. (PMID: 30523389)
      Philos Trans A Math Phys Eng Sci. 2015 Mar 28;373(2038):. (PMID: 25713448)
      Int J Urol. 1999 Apr;6(4):169-72. (PMID: 10226832)
      J Urol. 2000 Sep;164(3 Pt 1):640-3. (PMID: 10953115)
      Phys Med Biol. 2007 Dec 7;52(23):7087-108. (PMID: 18029995)
      Clin J Am Soc Nephrol. 2017 Oct 6;12(10):1699-1708. (PMID: 28830863)
      J Acoust Soc Am. 2010 Apr;127(4):2635-45. (PMID: 20370044)
      World J Urol. 2022 May;40(5):1203-1209. (PMID: 35166893)
      J Med Assoc Thai. 2012 Mar;95(3):342-8. (PMID: 22550832)
      Asian J Urol. 2018 Oct;5(4):205-214. (PMID: 30364478)
      J Urol. 1986 May;135(5):1078-83. (PMID: 3959234)
      Eur Urol Focus. 2021 Nov;7(6):1468-1475. (PMID: 32900675)
      Clin Med (Lond). 2012 Oct;12(5):467-71. (PMID: 23101150)
      Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F938-49. (PMID: 25656372)
      Curr Opin Urol. 2005 Mar;15(2):127-31. (PMID: 15725937)
      Sci Rep. 2018 Sep 13;8(1):13731. (PMID: 30213974)
      J Endourol. 2010 Sep;24(9):1411-4. (PMID: 20629563)
      J Acoust Soc Am. 2007 Feb;121(2):1190-202. (PMID: 17348540)
      ACS Omega. 2021 Oct 01;6(40):26566-26574. (PMID: 34661011)
      Sci Rep. 2022 Jan 24;12(1):1239. (PMID: 35075188)
      Eur Urol. 2012 Jul;62(1):160-5. (PMID: 22498635)
      Urol Res. 2005 Feb;33(1):51-6. (PMID: 15633055)
      Eur Urol. 2011 May;59(5):784-96. (PMID: 21354696)
      Eur Urol. 2005 Jun;47(6):860-4. (PMID: 15925084)
      World J Urol. 1993;11(1):26-30. (PMID: 8490664)
      Urology. 2002 Jan;59(1):20-4. (PMID: 11796273)
      Ann Intern Med. 1989 Dec 15;111(12):1006-9. (PMID: 2688503)
      Eur Urol. 2003 Dec;44(6):709-13. (PMID: 14644124)
      J Pediatr Surg. 2013 Apr;48(4):840-4. (PMID: 23583144)
      Eur Urol. 1999 Nov;36(5):371-5. (PMID: 10516444)
      Urolithiasis. 2018 Oct;46(5):459-470. (PMID: 29392338)
      Kidney Int. 2003 May;63(5):1817-23. (PMID: 12675858)
      J Urol. 1986 Dec;136(6):1367-72. (PMID: 3773122)
      World J Urol. 2016 Nov;34(11):1591-1597. (PMID: 27000560)
      Phys Med Biol. 2013 Apr 7;58(7):N103-13. (PMID: 23470559)
      J Urol. 2021 Sep;206(3):526-538. (PMID: 33904756)
      J Biomech. 2012 Oct 11;45(15):2520-5. (PMID: 22935690)
      World J Urol. 1994;12(1):49-51. (PMID: 8012416)
      J Urol. 2015 Jan;193(1):338-44. (PMID: 25111910)
      Phys Med Biol. 2013 Feb 7;58(3):735-48. (PMID: 23322027)
      J Endourol. 1993 Dec;7(6):453-6. (PMID: 8124335)
      Int J Clin Exp Med. 2015 Nov 15;8(11):21664-8. (PMID: 26885122)
      Eur Urol. 2000 Jan;37(1):23-5. (PMID: 10671780)
      Nat Rev Dis Primers. 2016 Feb 25;2:16008. (PMID: 27188687)
      J Am Soc Nephrol. 2006 Jun;17(6):1673-87. (PMID: 16707562)
      J Urol. 2011 May;185(5):1731-6. (PMID: 21420112)
      J Urol. 1996 Oct;156(4):1267-71. (PMID: 8808851)
      Am J Kidney Dis. 2016 Dec;68(6):973-985. (PMID: 27497526)
      Ann Med Surg (Lond). 2021 Sep 10;70:102829. (PMID: 34540217)
      Phys Med Biol. 2000 Jul;45(7):1923-40. (PMID: 10943929)
      Saudi J Kidney Dis Transpl. 2013 Jan;24(1):60-6. (PMID: 23354193)
      Arab J Urol. 2016 Apr 03;14(2):108-14. (PMID: 27489737)
      Nat Rev Urol. 2020 Jan;17(1):1-2. (PMID: 31676884)
      Br J Urol. 1997 Dec;80(6):853-7. (PMID: 9439396)
      J Urol. 1991 Jan;145(1):6-9; discussion 9-10. (PMID: 1984100)
      J Urol. 1997 Aug;158(2):352-5. (PMID: 9224301)
    • Grant Information:
      U54 DK100227 United States DK NIDDK NIH HHS
    • الرقم المعرف:
      2612HC57YE (Calcium Oxalate)
    • الموضوع:
      Date Created: 20221102 Date Completed: 20221103 Latest Revision: 20221229
    • الموضوع:
      20221230
    • الرقم المعرف:
      PMC9626463
    • الرقم المعرف:
      10.1038/s41598-022-23331-5
    • الرقم المعرف:
      36319741