Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

In situ electrodeposition of Cu-BDC metal-organic framework on pencil graphite substrate for solid-phase microextraction of some pesticides.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Hasani F;Hasani F; Raoof JB; Raoof JB; Ghani M; Ghani M; Ojani R; Ojani R
  • المصدر:
    Mikrochimica acta [Mikrochim Acta] 2022 Oct 26; Vol. 189 (11), pp. 432. Date of Electronic Publication: 2022 Oct 26.
  • نوع النشر :
    Journal Article; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Wien ; New York : Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      The study focuses on the electrochemical deposition of copper benzene-1,4-dicarboxylate framework (Cu-BDC MOF) on the surface of a very cheap pencil graphite (PG) substrate for utilization as the sorbent in fiber solid-phase microextraction (SPME) of two chosen pesticides, including abamectin and amitraz for the first time. The extracted pesticides were quantified by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The UV detector was set at 236 nm wavelength. Based on the optimized condition, the presented technique showed a good linear range (2-500 µg L -1 and 2-100 µg L -1 ), suitable limits of detections (LODs = 0.60 and 0.5 µg L -1 ), satisfactory enhancement factors (EFs = 128 and 105), good absolute recoveries (ARs% = 64% and 53%) and spiking recoveries in the range 87.4-110.0% for amitraz and abamectin, respectively. Intra- and inter-day relative standard deviations were found within the range 1.2-3.8% and 0.6-1.9%, respectively. The method was successfully employed for the quantification of the selected pesticides in strawberry juice, lemon juice, orange juice, tomato juice, and honey.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148. https://doi.org/10.1021/ac00218a019. (PMID: 10.1021/ac00218a019)
      Rocío-Bautista P, Gutiérrez-Serpa A, John Cruz A et al (2020) Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: ensuring stable and reusable fibers. Talanta 215:120910. https://doi.org/10.1016/j.talanta.2020.120910. (PMID: 10.1016/j.talanta.2020.12091032312454)
      Kabir A, Furton GK, Tinari N, Grossi L et al (2018) Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J Chromatogr B 1084:53–63. https://doi.org/10.1016/j.jchromb.2018.03.028. (PMID: 10.1016/j.jchromb.2018.03.028)
      Wu J, Mullett W, Pawliszyn J (2002) Electrochemically controlled solid-phase microextraction based on conductive polypyrrole films. Anal Chem 74:4855–4859. https://doi.org/10.1021/ac025595q. (PMID: 10.1021/ac025595q12349995)
      Djozan D, Assadi Y, Haddadi SH (2001) Anodized aluminum wire as a solid-phase microextraction fiber. Anal Chem 73:4054–4058. https://doi.org/10.1021/ac0100188. (PMID: 10.1021/ac010018811534736)
      Djozan D, Bahar S (2003) Monitoring of phenol and 4-chlorophenol in petrochemical sewage using solid-phase microextraction and capillary gas chromatography. Chromatographia 58:637–642. https://doi.org/10.1365/s10337-003-0064-0. (PMID: 10.1365/s10337-003-0064-0)
      Shokrollahi M, Seidi S, Fotouhi L (2020) In situ electrosynthesis of a copper-based metal–organic framework as nanosorbent for headspace solid-phase microextraction of methamphetamine in urine with GC-FID analysis. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-020-04535-w. (PMID: 10.1007/s00604-020-04535-w)
      Piri-Moghadam H, Alam MN, Pawliszyn J (2017) Review of geometries and coating materials in solid phase microextraction: opportunities, limitations, and future perspectives. Anal Chim Acta 984:42–65. https://doi.org/10.1016/j.aca.2017.05.035. (PMID: 10.1016/j.aca.2017.05.03528843569)
      Wei F, He Y, Qu X, Zhaoyi X (2019) In situ fabricated porous carbon coating derived from metal-organic frameworks for highly selective solid-phase microextraction. Anal Chim Acta 1078:70–77. https://doi.org/10.1016/j.aca.2019.05.061. (PMID: 10.1016/j.aca.2019.05.06131358230)
      Aziz Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. https://doi.org/10.1007/s00604-014-1265-y. (PMID: 10.1007/s00604-014-1265-y)
      Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM (2018) Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review. Anal Chim Acta 1002:1–1. https://doi.org/10.1016/j.aca.2017.11.042. (PMID: 10.1016/j.aca.2017.11.04229306409)
      Rocio-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?–A review. Anal Chim Acta 939:26–41. https://doi.org/10.1016/j.aca.2016.07.047. (PMID: 10.1016/j.aca.2016.07.04727639141)
      Gutiérrez-Serpa A, Napolitano-Tabares PI, Pino V, Jiménez-Moreno F, Jiménez-Abizanda A (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185:1–10. https://doi.org/10.1007/s00604-018-2880-9. (PMID: 10.1007/s00604-018-2880-9)
      Pacheco-Fernández I, Gutiérrez-Serpa A, Rocío-Bautista P, Pino V (2017) Molecularly imprinted polymers as promising sorbents in SPME applications. Solid-Phase Microextraction: Advances in Research and Applications. 1st ed. Nova Science Publishers: 147–168.
      Faraji M, Shirani M, Rashidi-Nodeh H (2021) The recent advances in magnetic sorbents and their applications. TrAC Trends Anal Chem 141:116302. https://doi.org/10.1016/j.trac.2021.116302. (PMID: 10.1016/j.trac.2021.116302)
      Delińska K, Rakowska PW, Kloskowski A (2021) Porous material-based sorbent coatings in Solid-phase microextraction technique: recent trends and future perspectives. TrAC Trends Anal Chem 143:116386. https://doi.org/10.1016/j.trac.2021.116386. (PMID: 10.1016/j.trac.2021.116386)
      Lashgari M, Yamini Y (2019) An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 191:283–306. https://doi.org/10.1016/j.talanta.2018.08.077. (PMID: 10.1016/j.talanta.2018.08.07730262064)
      Helin A, Rönkkö T, Parshintsev J, Hartonen K, Schilling B, Läubli T, Riekkola ML (2015) Solid phase microextraction Arrow for the sampling of volatile amines in wastewater and atmosphere. J Chromatogr A 1426:56–63. https://doi.org/10.1016/j.chroma.2015.11.061. (PMID: 10.1016/j.chroma.2015.11.06126643724)
      Queiroz MEC, de Souza ID, Marchioni C (2019) Current advances and applications of in-tube solid-phase microextraction. TrAC Trends Anal Chem 111:261–278. https://doi.org/10.1016/j.trac.2018.12.018. (PMID: 10.1016/j.trac.2018.12.018)
      Olcer YA, Tascon M, Eroglu EA, Boyacı E (2019) Thin film microextraction: towards faster and more sensitive microextraction. TrAC Trends Anal Chem 113:93–101. https://doi.org/10.1016/j.trac.2019.01.022. (PMID: 10.1016/j.trac.2019.01.022)
      David F, Ochiai N, Sandra P (2019) Two decades of stir bar sorptive extraction: a retrospective and future outlook. TrAC Trends Anal Chem 112:102–111. https://doi.org/10.1016/j.trac.2018.12.006. (PMID: 10.1016/j.trac.2018.12.006)
      Gao J, Huang G, Lin Y, Tong P, Zhang L (2016) In situ solvothermal synthesis of metal–organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1436:1–8. https://doi.org/10.1016/j.chroma.2016.01.051. (PMID: 10.1016/j.chroma.2016.01.05126868446)
      Li M, Dinca M (2011) Reductive electrosynthesis of crystalline metal–organic frameworks. J Am Chem Soc 133:12926–12929. https://doi.org/10.1021/ja2041546. (PMID: 10.1021/ja204154621790152)
      Liang W, D’Alessandro DM (2013) Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chem Commun 49:3706–3708. https://doi.org/10.1039/C3CC40368H. (PMID: 10.1039/C3CC40368H)
      Wang FQ, Li J, Wu JF, Zhao GC (2018) Layered double hydroxides as a coating for the determination of phthalate esters in aqueous solution with solid-phase microextraction followed by gas chromatography. Chromatographia 81:799–807. https://doi.org/10.1007/s10337-018-3507-3. (PMID: 10.1007/s10337-018-3507-3)
      Liu L, Meng WK, Zhou YS, Wang X, Xu GJ, Wang ML, Lin JM, Zhao RS (2019) β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem Eng 356:926–933. https://doi.org/10.1016/j.cej.2018.09.081. (PMID: 10.1016/j.cej.2018.09.081)
      Kong J, Zhu F, Huang W, He H, Hu J, Sun C, Xian Q, Yang S (2019) Sol–gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1603:92–101. https://doi.org/10.1016/j.chroma.2019.06.063. (PMID: 10.1016/j.chroma.2019.06.06331280943)
      Picó Y, Farré M, Tokman N, Barceló D (2008) Rapid and sensitive ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry for the quantification of amitraz and identification of its degradation products in fruits. J Chromatogr A 1203:36–46. https://doi.org/10.1016/j.chroma.2008.07.018. (PMID: 10.1016/j.chroma.2008.07.01818656887)
      Pohorecka K, Kiljanek T, Antczak M, Skubida P, Semkiw P, Posyniak A (2018) Amitraz marker residues in honey from honeybee colonies treated with Apiwarol. Vet Res 62:297. https://doi.org/10.2478/jvetres-2018-0043. (PMID: 10.2478/jvetres-2018-0043)
      Ionel B (2018) European regulation in the veterinary sanitary and food safety area, a component of the European policies on the safety of food products and the protection of consumer interests: a 2007 retrospective. Part two: Regulations. Universul Juridic :16–19.
      Belguet A, Dahamna S, Abdessemed A, Ouffroukh K, Guendouz A (2019) Determination of abamectin pesticide residues in green pepper and courgette growing under greenhouse conditions (Eastern of Algeria–Setif–). Eur Asian J Bio Sci 13(2):1741–1745.
      Özcan N, Akman S (2019) Determination of amitraz and its degradation products and monitoring degradation process in quince and cucumber. Int J Environ Anal Chem 99(4):357–368. https://doi.org/10.1080/03067319.2019.1596266. (PMID: 10.1080/03067319.2019.1596266)
      Yamini Y, Faraji M, Ghambarian M (2015) Hollow-fiber liquid-phase microextraction followed by gas chromatography flame ionization detection for the determination of amitraz in honey and water samples. Food Anal Methods 8:758–766. https://doi.org/10.1007/s12161-014-9953-0. (PMID: 10.1007/s12161-014-9953-0)
      Zhang HX, Wei L, Hong X, Yan G, XiTian P, YuQi F (2017) Rapid and sensitive detection of avermectin residues in edible oils by magnetic solid-phase extraction combined with ultra-high-pressure liquid chromatography-tandem mass spectrometry. Food Anal Methods 10:3201–3208. https://doi.org/10.1007/s12161-017-0857-7. (PMID: 10.1007/s12161-017-0857-7)
      Jafari Z, Hadjmohammadi MR (2020) In situ growth of zeolitic imidazolate framework-8 on woven cotton yarn for the thin film microextraction of quercetin in human plasma and food samples. Anal Chim Acta 1131:45–55. https://doi.org/10.1016/j.aca.2020.07.037. (PMID: 10.1016/j.aca.2020.07.03732928479)
      Darvishnejad F, Raoof JB, Ghani M (2020) MIL-101 (Cr)@ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water. Anal Chim Acta 1140:99–110. https://doi.org/10.1016/j.aca.2020.10.015. (PMID: 10.1016/j.aca.2020.10.01533218494)
      Valenzuela A, Redondo MJ, Pico Y, Font G (2000) Determination of abamectin in citrus fruits by liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 871:57–65. https://doi.org/10.1016/S0021-9673(99)01190-5. (PMID: 10.1016/S0021-9673(99)01190-510735286)
      Gumilar G, Kaneti YV, Henzie J, Chatterjee S, Na J et al (2020) General synthesis of hierarchical sheet/plate-like M-BDC (M= Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chem Sci J 11:3644–3655. https://doi.org/10.1039/C9SC05636J. (PMID: 10.1039/C9SC05636J)
      Salama RS, El-Hakam SA, Samra SE, El-Dafrawy SM, Ahmed AI et al (2018) Adsorption, equilibrium and kinetic studies on the removal of methyl orange dye from aqueous solution by using of copper metal organic framework (Cu-BDC). Int J Modern Chem 10:195–207.
      Gao X, Tan Y, Guo H (2017) Simultaneous determination of amitraz, chlordimeform, formetanate and their main metabolites in human urine by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 1052:27–33. https://doi.org/10.1016/j.jchromb.2017.03.004. (PMID: 10.1016/j.jchromb.2017.03.004)
      Guo H, Zhang P, Wang J, Zheng J (2014) Determination of amitraz and its metabolites in whole blood using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B 951:89–95. https://doi.org/10.1016/j.jchromb.2014.01.027. (PMID: 10.1016/j.jchromb.2014.01.027)
      Xu JZ, Miao JJ, Lin H, Ding T, Zhao ZY, Wu B, Shen CY, Jiang Y (2009) Determination of amitraz and 2, 4-dimethylaniline residues in honey by using LC with UV detection and MS/MS. J Sep Sci 32:4020–4024. https://doi.org/10.1002/jssc.200900437. (PMID: 10.1002/jssc.20090043720066677)
      Ali M, Abd Halim EM, Amin M (2021) Simultaneous determination of abamectin and closantel in veterinary formulation by validated HPLC method. J Chromatogr Sci 59:445–451. https://doi.org/10.1093/chromsci/bmab023. (PMID: 10.1093/chromsci/bmab02333709144)
      Borges JH, Ravelo-Pérez LM, Hernández-Suárez EM, Carnero A, Rodríguez-Delgado MA (2008) Determination of abamectin residues in avocados by microwave-assisted extraction and HPLC with fluorescence detection. Chromatographia 67:69–75. https://doi.org/10.1365/s10337-007-0442-0. (PMID: 10.1365/s10337-007-0442-0)
    • Contributed Indexing:
      Keywords: Cu-BDC MOF; Electrosynthesis; Pencil graphite; Pesticides; Solid-phase microextraction
    • الرقم المعرف:
      7782-42-5 (Graphite)
      0 (Pesticides)
      33IAH5017S (amitraz)
      0 (Metal-Organic Frameworks)
      789U1901C5 (Copper)
      5U8924T11H (abamectin)
      J64922108F (Benzene)
    • الموضوع:
      Date Created: 20221025 Date Completed: 20221027 Latest Revision: 20221108
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1007/s00604-022-05537-6
    • الرقم المعرف:
      36284019