Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Berry F;Berry F; Morin-Dewaele M; Morin-Dewaele M; Majidipur A; Majidipur A; Jamet T; Jamet T; Bartier S; Bartier S; Bartier S; Bartier S; Bartier S; Ignjatovic E; Ignjatovic E; Toniutti D; Toniutti D; Gaspar Lopes J; Gaspar Lopes J; Soyeux-Porte P; Soyeux-Porte P; Maillé P; Maillé P; Maillé P; Saldana C; Saldana C; Saldana C; Brillet R; Brillet R; Ahnou N; Ahnou N; Softic L; Softic L; Couturaud B; Couturaud B; Huet É; Huet É; Ahmed-Belkacem A; Ahmed-Belkacem A; Fourati S; Fourati S; Fourati S; Louis B; Louis B; Coste A; Coste A; Coste A; Coste A; Coste A; Béquignon É; Béquignon É; Béquignon É; Béquignon É; Béquignon É; de la Taille A; de la Taille A; de la Taille A; Destouches D; Destouches D; Vacherot F; Vacherot F; Pawlotsky JM; Pawlotsky JM; Pawlotsky JM; Firlej V; Firlej V; Bruscella P; Bruscella P
- المصدر:
Journal of extracellular vesicles [J Extracell Vesicles] 2022 Oct; Vol. 11 (10), pp. e12269.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley Country of Publication: United States NLM ID: 101610479 Publication Model: Print Cited Medium: Internet ISSN: 2001-3078 (Electronic) Linking ISSN: 20013078 NLM ISO Abbreviation: J Extracell Vesicles Subsets: MEDLINE
- بيانات النشر: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Järfälla : Co-Action Pub. - الموضوع:
- نبذة مختصرة : Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.
(© 2022 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.) - Comments: Comment in: J Extracell Vesicles. 2022 Dec;11(12):e12296. (PMID: 36541555)
- References: Ahn, J. H., Kim, J., Hong, S. P., Choi, S. Y., Yang, M. J., Ju, Y. S., Kim, Y. T., Kim, H. M., Rahman, M. T., Chung, M. K., Hong, S. D., Bae, H., Lee, C. -S., & Koh, G. Y. (2021). Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. Journal of Clinical Investigation, 131, e148517.
Akers, J. C., Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113, 1-11.
Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4, 1011-1033.
Benton, D. J., Wrobel, A. G., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588, 327-330.
Bequignon, E., Dhommee, C., Angely, C., Thomas, L., Bottier, M., Escudier, E., Isabey, D., Coste, A., Louis, B., Papon, J., & Gouilleux-Gruart, V. (2019). FcRn-dependent transcytosis of monoclonal antibody in human nasal epithelial cells in vitro: A prerequisite for a new delivery route for therapy? International Journal of Molecular Sciences, 20, 1379.
Bestle, D., Heindl, M. R., Limburg, H., Van Lam Van, T., Pilgram, O., Moulton, H., Stein, D. A., Hardes, K., Eickmann, M., Dolnik, O., Rohde, C., Klenk, H. -. D., Garten, W., Steinmetzer, T., & Böttcher-Friebertshäuser, E. (2020). TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance, 3, e202000786.
Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M., Walsh, R. M. Jr., Rawson, S., Rits-Volloch, S., & Chen, B. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science, 369, 1586-1592.
Cocozza, F., Nevo, N., Piovesana, E., Lahaye, X., Buchrieser, J., Schwartz, O., Manel, N., Tkach, M., Thery, C., & Martin-Jaular, L. (2020). Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. Journal of Extracellular Vesicles, 10, e12050.
Conzelmann, C., Gross, R., Zou, M., Kruger, F., Gorgens, A., Gustafsson, M. O., El Andaloussi, S., Munch, J., & Muller, J. A. (2020). Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. Journal of Extracellular Vesicles, 9, 1808281.
Coste, A., Brugel, L., Maitre, B., Boussat, S., Papon, J. F., Wingerstmann, L., Peynegre, R., & Escudier, E. (2000). Inflammatory cells as well as epithelial cells in nasal polyps express vascular endothelial growth factor. European Respiratory Journal, 15, 367-372.
Coutard, B., Valle, C., De Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742.
Deng, Q., Rasool, R. U., Russell, R. M., Natesan, R., & Asangani, I. A. (2021). Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience, 24, 102254.
Earnest, J. T., Hantak, M. P., Li, K., McCray, P. B. Jr., Perlman, S., & Gallagher, T. (2017). The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. Plos Pathogens, 13, e1006546.
Earnest, J. T., Hantak, M. P., Park, J. -. E., & Gallagher, T. (2015). Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. Journal of Virology, 89, 6093-6104.
Fuentes-Prior, P. (2021). Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. Journal of Biological Chemistry, 296, 100135.
Gupta, A., Madhavan, M. V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T. S., Bikdeli, B., Ahluwalia, N., Ausiello, J. C., Wan, E. Y., Freedberg, D. E., Kirtane, A. J., Parikh, S. A., Maurer, M. S., Nordvig, A. S., Accili, D., Bathon, J. M., Mohan, S., Bauer, K. A., … Landry, D. W. (2020). Extrapulmonary manifestations of COVID-19. Nature Medicine, 26, 1017-1032.
Hantak, M. P., Qing, E., Earnest, J. T., & Gallagher, T. (2019). Tetraspanins: Architects of viral entry and exit platforms. Journal of Virology, 93, e01429-17.
Harkema, J. R., Carey, S. A., & Wagner, J. G. (2006). The nose revisited: A brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicologic Pathology, 34, 252-269.
Hoffmann, M., Kleine-Weber, H., & Pohlmann, S. (2020a). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell, 78, 779-784.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., & Nitsche, A. (2020b). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, 271-280 e8.
Hopkins, C., Surda, P., Whitehead, E., & Kumar, B. N. (2020). Early recovery following new onset anosmia during the COVID-19 pandemic - An observational cohort study. Journal of Otolaryngology Head & Neck Surgery, 49, 26.
Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., Mckeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H. -. G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588, 498-502.
Koch, J., Uckeley, Z. M., Doldan, P., Stanifer, M., Boulant, S., & Lozach, P. Y. (2021). TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO Journal, 40, e107821.
Lamers, M. M., Mykytyn, A. Z., Breugem, T. I., Wang, Y., Wu, D. C., Riesebosch, S., Van Den Doel, P. B., Schipper, D., Bestebroer, T., Wu, N. C., & Haagmans, B. L. (2021). Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife, 10, e66815.
Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3, 237-261.
Li, F., Han, M., Dai, P., Xu, W., He, J., Tao, X., Wu, Y., Tong, X., Xia, X., Guo, W., Zhou, Y., Li, Y., Zhu, Y., Zhang, X., Liu, Z., Aji, R., Cai, X., Li, Y., Qu, D., … Gao, D. (2021). Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communication, 12, 866.
Li, J., Liu, K., Liu, Y., Xu, Y., Zhang, F., Yang, H., Liu, J., Pan, T., Chen, J., Wu, M., Zhou, X., & Yuan, Z. (2013). Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nature Immunology, 14, 793-803.
Ludwig, A. K., De Miroschedji, K., Doeppner, T. R., Borger, V., Ruesing, J., Rebmann, V., Durst, S., Jansen, S., Bremer, M., & Behrmann, E. (2018). Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles, 7, 1528109.
Mack, M., Kleinschmidt, A., Bruhl, H., Klier, C., Nelson, P. J., Cihak, J., Plachy, J., Stangassinger, M., Erfle, V., & Schlondorff, D. (2000). Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: A mechanism for cellular human immunodeficiency virus 1 infection. Nature Medicine, 6, 769-775.
Madu, I. G., Roth, S. L., Belouzard, S., & Whittaker, G. R. (2009). Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. Journal of Virology, 83, 7411-7421.
Mathieu, M., Martin-Jaular, L., Lavieu, G., & Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21, 9-17.
Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T., & Takeda, M. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings National Academy of Science United States of America, 117, 7001-7003.
Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., & Taguchi, F. (2005). Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proceedings National Academy of Science United States of America, 102, 12543-12547.
Mehta, O. P., Bhandari, P., Raut, A., Kacimi, S. E. O., & Huy, N. T. (2020). Coronavirus Disease (COVID-19): Comprehensive review of clinical presentation. Frontiers in Public Health, 8, 582932.
Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., Ganesh, S., Varsavsky, T., Cardoso, M. J., El-Sayed Moustafa, J. S., Visconti, A., Hysi, P., Bowyer, R. C. E., Mangino, M., Falchi, M., Wolf, J., Ourselin, S., Chan, A. T., Steves, C. J., & Spector, T. D. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, 26, 1037-1040.
Millet, J. K., & Whittaker, G. R. (2015). Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 202, 120-134.
Muller, L., Brighton, L. E., Carson, J. L., Fischer, W. A. 2nd, & Jaspers, I. (2013). Culturing of human nasal epithelial cells at the air liquid interface. Journal of Visualized Experiments: JoVE, 50646.
Papa, G., Mallery, D. L., Albecka, A., Welch, L. G., Cattin-Ortola, J., Luptak, J., Paul, D., McMahon, H. T., Goodfellow, I. G., Carter, A., Munro, S., & James, L. C. (2021). Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. Plos Pathogens, 17, e1009246.
Papon, J. F., Coste, A., Gendron, M. C., Cordonnier, C., Wingerstmann, L., Peynegre, R., & Escudier, E. (2002). HLA-DR and ICAM-1 expression and modulation in epithelial cells from nasal polyps. Laryngoscope, 112, 2067-2075.
Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7, 439-450.
Ramakrishnaiah, V., Thumann, C., Fofana, I., Habersetzer, F., Pan, Q., De Ruiter, P. E., Willemsen, R., Demmers, J. A. A., Stalin Raj, V., Jenster, G., Kwekkeboom, J., Tilanus, H. W., Haagmans, B. L., Baumert, T. F., & Van Der Laan, L. J. W. (2013). Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings National Academy of Science United States of America, 110, 13109-13113.
Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200, 373-383.
Rozmyslowicz, T., Majka, M., Kijowski, J., Murphy, S. L., Conover, D. O., Poncz, M., Ratajczak, J., Gaulton, G. N., & Ratajczak, M. Z. (2003). Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. Aids, 17, 33-42.
Salem, I., Naranjo, N. M., Singh, A., DeRita, R., Krishn, S. R., Sirman, L. S., Quaglia, F., Duffy, A., Bowler, N., & Sayeed, A. (2020). Methods for extracellular vesicle isolation from cancer cells. Cancer Drug Resistance, 3, 371-384.
Schorey, J. S., Cheng, Y., Singh, P. P., & Smith, V. L. (2015). Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Reports, 16, 24-43.
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings National Academy of Science United States of America, 117, 11727-11734.
Synowiec, A., Szczepanski, A., Barreto-Duran, E., Lie, L. K., & Pyrc, K. (2021). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A systemic infection. Clinical Microbiology Reviews, 34, e00133-20.
Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R., & Daniel, S. (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research, 178, 104792.
Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30: 3.22.1-3.22.29.
Thery, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. -M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750.
Van Deun, J., Mestdagh, P., Agostinis, P., Akay, O., Anand, S., Anckaert, J., Martinez, Z. A., Baetens, T., Beghein, E., & Bertier, L. (2017). EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228-232.
Walls, A. C., Park, Y. -. J., Tortorici, M. A., Wall, A., Mcguire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281-292.e6.
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. -Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181, 894-904.e9.
White, J. M., & Whittaker, G. R. (2016). Fusion of enveloped viruses in endosomes. Traffic (Copenhagen, Denmark), 17, 593-614.
Whittaker, G. R., Daniel, S., & Millet, J. K. (2021). Coronavirus entry: How we arrived at SARS-CoV-2. Current Opinion in Virology, 47, 113-120.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. -. L., Abiona, O., Graham, B. S., & Mclellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260-1263.
Wrobel, A. G., Benton, D. J., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nature Structural & Molecular Biology, 27, 763-767.
Wu, G., Yang, G., Zhang, R., Xu, G., Zhang, L., Wen, W., Lu, J., Liu, J., & Yu, Y. (2015). Altered microRNA expression profiles of extracellular vesicles in nasal mucus from patients with allergic rhinitis. Allergy, Asthma & Immunology Research, 7, 449-457.
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367, 1444-1448.
Zebrowska, A., Skowronek, A., Wojakowska, A., Widlak, P., & Pietrowska, M. (2019). Metabolome of exosomes: Focus on vesicles released by cancer cells and present in human body fluids. International Journal of Molecular Sciences, 20, 3461.
Zhou, P., Yang, X. -L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. -R., Zhu, Y., Li, B., Huang, C. -L., Chen, H. -D., Chen, J., Luo, Y., Guo, H., Jiang, R. -D., Liu, M. -Q., Chen, Y., Shen, X. -R., Wang, X., … Shi, Z. -L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. - Grant Information: "UFR Santé-UPEC" cross-teams COVID-19 grant
- Contributed Indexing: Keywords: SARS-CoV-2; Spike prefusion priming; TMPRSS2; human nasal epithelial cells; small extracellular vesicles
- الرقم المعرف: 0 (Spike Glycoprotein, Coronavirus)
EC 3.4.21.75 (Furin)
EC 3.4.17.23 (Angiotensin-Converting Enzyme 2)
0 (Lipid Bilayers)
EC 3.4.- (Cathepsins)
0 (spike protein, SARS-CoV-2) - الموضوع: Date Created: 20221022 Date Completed: 20221025 Latest Revision: 20230407
- الموضوع: 20240829
- الرقم المعرف: PMC9587708
- الرقم المعرف: 10.1002/jev2.12269
- الرقم المعرف: 36271885
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.