Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Elemental composition of rural household dust in Brahmaputra fluvial plain: insights from SEM-EDS, receptor model, and risk assessment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • الموضوع:
    • نبذة مختصرة :
      The study attempts to look into the morphological characteristics, elemental composition, contamination, source contributions, and associated health risks in household dust of Napaam, a rural region in the Brahmaputra flood plain in North East India. Morphological evidence suggests that most of the house dust particles were sourced from vehicle abrasion and soil. Three contamination indices-enrichment factor (EF), index of geo-accumulation (I geo ), and pollution load index (PLI) indicated that Cl and four trace elements (Cu, Zn, As, and Pb) are significantly enriched in house dust with extreme pollution load. Principal component analysis (PCA) and positive matrix factorization (PMF) revealed 3 potential major sources of elements in house dust-traffic + re-suspension of road dust (35.8%), soil dust (22.2%), and river sediment deposit (16.4%). Two minor sources-biomass burning (13.3%), and construction activities (12.3%) were also identified. Based on health risk assessment (HRA), both children and adult were found to be susceptible to non-carcinogenic and carcinogenic risks.
      (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Adachi, K., & Tainosho, Y. (2004). Characterization of trace metal particles embedded in tire dust. Environmental International, 30, 1009–1017. (PMID: 10.1016/j.envint.2004.04.004)
      Apeagyei, E., Bank, M. S., & Spengler, J. D. (2011). Distribution of trace metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment, 45, 2310–2323. (PMID: 10.1016/j.atmosenv.2010.11.015)
      Bartz, W., Górka, M., Rybak, J., Rutkowski, R., & Stojanowska, A. (2021). The assessment of effectiveness of SEM-EDS and ICP-MS methods in the process of determining the mineralogical and geochemical composition of particulate matter deposited on spider webs. Chemosphere, 278, 130454. (PMID: 10.1016/j.chemosphere.2021.130454)
      Bora, J., Deka, P., Bhuyan, P., Sarma, K. P., & Hoque, R. R. (2021). Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM−EDS, XRD, and FTIR techniques. SN Applied Sciences, 3, 1–15. (PMID: 10.1007/s42452-020-04117-8)
      Cao, S., Chen, X., Zhang, L., Xing, X., Wen, D., Wang, B., Qin, N., Wei, F., & Duan, X. (2020). Quantificational exposure, sources, and health risks posed by trace metals in indoor and outdoor household dust in a typical smelting area in China. Indoor Air, 30, 872–884. (PMID: 10.1111/ina.12683)
      Census of India. (2011). Tables on Houses. New Delhi: Household Amenities and Assets.
      Central Ground Water Board. (2020). Aquifer mapping and management of ground water resources. Government of India: Ministry of Jal Shakti.
      Chattopadhyay, G., Lin, K. C. P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93, 301–307. (PMID: 10.1016/S0013-9351(03)00058-6)
      Das, N., Das, A., Sarma, K. P., & Kumar, M. (2018). Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere, 194, 755–772. (PMID: 10.1016/j.chemosphere.2017.12.021)
      Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87, 163–170. (PMID: 10.1016/j.chemosphere.2011.12.012)
      Haley, S. M., Tappin, A. D., Bond, P. R., & Fitzsimons, M. F. (2006). A comparison of SEM-EDS with ICP-AES for the quantitative elemental determination of estuarine particles. Environmental Chemistry Letters, 4, 235–238. (PMID: 10.1007/s10311-006-0054-1)
      Hall, G. S., & Tinklenberg, J. (2003). Determination of Ti, Zn, and Pb in lead-based house paints by EDSRF. Journal of Analytical Atomic Spectrometry, 18, 775–778. (PMID: 10.1039/b300597f)
      Hama, S., Kumar, P., Alam, M. S., Rooney, D. J., Bloss, W. J., Shi, Z., Harrison, R. M., Crilley, L. R., Khare, M., & Gupta, S. K. (2021). Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 274, 129913. (PMID: 10.1016/j.chemosphere.2021.129913)
      Handique, S., Sharma, P., Baruah, K. K., & Tripathi, J. K. (2017). Spatial and temporal variations in the geochemistry of the Brahmaputra River water. International Journal of Geosciences, 8, 756. (PMID: 10.4236/ijg.2017.85042)
      Hassan, S. K. M. (2000). A study on indoor air quality in greater Cairo. Cairo University.
      Hassan, S. K. M. (2012). Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmospheric Environment, 54, 207–215. (PMID: 10.1016/j.atmosenv.2012.02.013)
      Hays, S. M., Gobbell, R. V., & Ganick, N. R. (1995). Indoor air quality: Solutions and strategies. New York: McGraw-Hill Inc.
      Hunt, A., Johnson, D. L., Watt, J. M., & Thornton, I. (1992). Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy. Environmental Science and Technology, 26, 1513–1523. (PMID: 10.1021/es00032a003)
      Iwegbue, C. M., Oliseyenum, E. C., & Martincigh, B. S. (2017). Spatio-temporal distribution of metals in household dust from rural, semi-urban and urban environments in the Niger Delta, Nigeria. Environmental Science and Pollution Research, 24, 14040–14059. (PMID: 10.1007/s11356-017-8609-1)
      Jiang, N., Dong, Z., Xu, Y. Q., Yu, F., Yin, S. S., Zhang, R. Q., & Tang, X. Y. (2018). Characterization of PM 10 and PM 2.5 source profiles of fugitive dust in Zhengzhou China. Aerosol and Air Quality Research, 18, 314–329. (PMID: 10.4209/aaqr.2017.04.0132)
      Karim, Z., Qureshi, B. A., Mumtaz, M., & Qureshi, S. (2014). Trace metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—a multivariate spatio-temporal analysis. Ecological Indicators, 42, 20–31. (PMID: 10.1016/j.ecolind.2013.07.020)
      Kolakkandi, V., Sharma, B., Rana, A., Dey, S., Rawat, P., & Sarkar, S. (2020). Spatially resolved distribution, sources and health risks of trace metals in size-fractionated road dust from 57 sites across megacity Kolkata India. Science of the Total Environment, 705, 135805. (PMID: 10.1016/j.scitotenv.2019.135805)
      Kumar, M., Das, N., Goswami, R., Sarma, K. P., Bhattacharya, P., & Ramanathan, A. L. (2016). Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere, 164, 657–667. (PMID: 10.1016/j.chemosphere.2016.08.075)
      Lin, Y., Fang, F., Wang, F., & Xu, M. (2015). Pollution distribution and health risk assessment of trace metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187, 1–9. (PMID: 10.1007/s10661-015-4763-4)
      Men, C., Liu, R., Xu, F., Wang, Q., Guo, L., & Shen, Z. (2018). Pollution characteristics, risk assessment, and source apportionment of trace metals in road dust in Beijing, China. Science of the Total Environment, 612, 138–147. (PMID: 10.1016/j.scitotenv.2017.08.123)
      Miler, M., & Gosar, M. (2019). Assessment of contribution of metal pollution sources to attic and household dust in Pb-polluted area. Indoor Air, 29, 487–498. (PMID: 10.1111/ina.12548)
      Misra, M. K., Ragland, K. W., & Baker, A. J. (1993). Wood ash composition as a function of furnace temperature. Biomass and Bioenergy, 4, 103–116. (PMID: 10.1016/0961-9534(93)90032-Y)
      Nastov, J., Tan, R., & Dingle, P. (2003). The use of fibre technology to control surface dust and bacteria contamination. Report Series, 1, Environmental science report, Australia.
      Norris, G., Duvall, R., Brown, S., & Bai, S. (2014). EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide, US Environmental Protection Agency. EPA/600/R-14/108 (NTIS PB2015-105147).
      Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of trace metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment, 609, 1361–1369. (PMID: 10.1016/j.scitotenv.2017.08.004)
      Patel, A. K., Das, N., & Kumar, M. (2019). Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: A tale of redox domination along the depth. Chemosphere, 224, 140–150. (PMID: 10.1016/j.chemosphere.2019.02.097)
      Phi, T. H., Chinh, P. M., Hung, N. T., Ly, L. T. M., & Thai, P. K. (2017). Spatial distribution of elemental concentrations in street dust of Hanoi Vietnam. Bulletin of Environmental Contamination and Toxicology, 98, 277–282. (PMID: 10.1007/s00128-016-2001-6)
      Phil-Eze, P. O. (2010). Variability of soil properties related to vegetation cover in a tropical rainforest landscape. Journal of Geography and Regional Planning, 3, 177–184.
      Rasmussen, P. E. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Sciences and Spectroscopy, 49, 166–174.
      Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125–140. (PMID: 10.1016/S0048-9697(00)00775-0)
      Sanderson, P., Su, S. S., Chang, I. T. H., Delgado Saborit, J. M., Kepaptsoglou, D. M., Weber, R. J. M., & Harrison, R. M. (2016). Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmospheric Environment, 140, 167–175.
      Saud, T., Saxena, M., Singh, D. P., Dahiya, M., Sharma, S. K., Datta, A., Gadi, R., & Mandal, T. K. (2013). Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmospheric Environment, 71, 158–169. (PMID: 10.1016/j.atmosenv.2013.01.053)
      Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12, 101079. (PMID: 10.1016/j.gsf.2020.08.015)
      Shi, D., & Lu, X. (2018). Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Science of the Total Environment, 636, 1211–1218. (PMID: 10.1016/j.scitotenv.2018.04.385)
      Smołka-Danielowska, D., & Jabłońska, M. (2022). Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. International Journal of Environmental Science and Technology, 19, 5359–5372. (PMID: 10.1007/s13762-021-03506-9)
      Tong, S. T., & Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256, 115–123. (PMID: 10.1016/S0048-9697(00)00471-X)
      Torres-Sánchez, R., de la Campa, A. M. S., Beltrán, M., Sánchez-Rodas, D., & Jesús, D. (2017). Geochemical anomalies of household dust in an industrialized city (Huelva, SW Spain). Science of the Total Environment, 587, 473–481. (PMID: 10.1016/j.scitotenv.2017.02.167)
      Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371, 74–81. (PMID: 10.1016/j.scitotenv.2006.08.011)
      Valotto, G., Rampazzo, G., Visin, F., Gonella, F., Cattaruzza, E., Glisenti, A., Formenton, G., & Tieppo, P. (2015). Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmospheric Environment, 122, 596–608. (PMID: 10.1016/j.atmosenv.2015.10.006)
      van der Gon, H. D., & Appelman, W. (2009). Lead emissions from road transport in Europe: A revision of current estimates using various estimation methodologies. Science of the Total Environment, 407, 5367–5372. (PMID: 10.1016/j.scitotenv.2009.06.027)
      World Bank. (2020). Rural population (% of total population). https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?end=2020&start=1960.
      Yadav, I. C., Devi, N. L., Singh, V. K., Li, J., & Zhang, G. (2019). Spatial distribution, source analysis, and health risk assessment of trace metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere, 218, 1100–1113. (PMID: 10.1016/j.chemosphere.2018.11.202)
      Yaparla, D., Nagendra, S. S., & Gummadi, S. N. (2019). Characterization and health risk assessment of indoor dust in biomass and LPG-based households of rural Telangana, India. Jouranl of Air & Waste Management. Association, 69, 1438–1451.
      Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., Takagi, M., & Tanaka, A. (2014). Lead and other elements in house dust of Japanese residences−Source of lead and health risks due to metal exposure. Environmental Pollution, 189, 223–228. (PMID: 10.1016/j.envpol.2014.03.003)
      Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008). Statistical analyses of geochemical variables in soils of Ireland. Geoderma, 146, 378–390. (PMID: 10.1016/j.geoderma.2008.06.013)
      Zhang, G., Ding, C., Jiang, X., Pan, G., Wei, X., & Sun, Y. (2020). Chemical compositions and sources contribution of atmospheric particles at a typical steel industrial urban site. Scientific Reports, 10, 7654. (PMID: 10.1038/s41598-020-64519-x)
      Žibret, G., & Rokavec, D. (2010). Household dust and street sediment as an indicator of recent trace metals in atmospheric emissions: A case study on a previously heavily contaminated area. Environmental Earth Sciences, 61, 443–453. (PMID: 10.1007/s12665-009-0356-2)
    • Contributed Indexing:
      Keywords: Contamination indices; Elements; Health risk; Household dust; PMF; Rural; SEM-EDS
    • الرقم المعرف:
      0 (Dust)
      0 (Metals, Heavy)
      0 (Soil)
    • الموضوع:
      Date Created: 20220822 Date Completed: 20230501 Latest Revision: 20230501
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s10653-022-01361-2
    • الرقم المعرف:
      35995879