References: Jaffray, D. A. & Gospodarowicz, M. K. Radiation therapy for cancer. In Cancer: Disease Control Priorities 3rd edn, Vol. 3 (eds Gelband, H. et al.) (The International Bank for Reconstruction and Development/The World Bank, 2016).
Abou, D. et al. Prostate cancer theranostics—An overview. Front. Oncol. 10, 884 (2020). (PMID: 32582550729024610.3389/fonc.2020.00884)
Humm, J. L. & Chin, L. M. A model of cell inactivation by alpha-particle internal emitters. Radiat. Res. 134, 143–150 (1993). (PMID: 848824910.2307/3578453)
Kluetz, P. G. et al. Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 20, 9–14 (2014). (PMID: 2419097910.1158/1078-0432.CCR-13-2665)
Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013). (PMID: 2386305010.1056/NEJMoa1213755)
Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016). (PMID: 2739015810.2967/jnumed.116.178673)
Miederer, M. et al. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J. Nucl. Med. 45, 129–137 (2004). (PMID: 14734685)
Meredith, R. F. et al. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol. 41, 716–721 (2018). (PMID: 2790672310.1097/COC.0000000000000353)
Andersson, H. et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2—A phase I study. J. Nucl. Med. 50, 1153–1160 (2009). (PMID: 1952545210.2967/jnumed.109.062604)
McDevitt, M. R. et al. Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat. Commun. 9, 1629 (2018). (PMID: 29691406591557910.1038/s41467-018-04107-w)
Feuerecker, B. et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur. Urol. 79, 343–350 (2021). (PMID: 3329308110.1016/j.eururo.2020.11.013)
McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001). (PMID: 1171167810.1126/science.1064126)
Rosenblat, T. L. et al. Treatment of patients with acute myeloid leukemia with the targeted alpha-particle nano-generator actinium-225-lintuzumab. Clin. Cancer Res. 28, 2030–2037 (2022). (PMID: 3524791510.1158/1078-0432.CCR-21-3712)
Nikula, T. K. et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: Pharmacokinetics, bioactivity, toxicity and chemistry. J. Nucl. Med. 40, 166–176 (1999). (PMID: 9935073)
Kratochwil, C. et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: Swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med. 59, 795–802 (2018). (PMID: 2932635810.2967/jnumed.117.203539)
Isaacsson Velho, P. et al. Efficacy of radium-223 in bone-metastatic castration-resistant prostate cancer with and without homologous repair gene defects. Eur. Urol. 76, 170–176 (2018). (PMID: 3029390510.1016/j.eururo.2018.09.040)
Wilson, T. C. et al. PET imaging of PARP expression using 18F-olaparib. J. Nucl. Med. 60, 504–510 (2019). (PMID: 30389822644845910.2967/jnumed.118.213223)
Cornelissen, B. et al. Imaging DNA damage in vivo using gammaH2AX-targeted immunoconjugates. Cancer Res. 71, 4539–4549 (2011). (PMID: 21586614313013310.1158/0008-5472.CAN-10-4587)
Zhou, D. et al. Synthesis, [ 18 F] radiolabeling, and evaluation of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg. Med. Chem. 22, 1700–1707 (2014). (PMID: 24503274402017310.1016/j.bmc.2014.01.019)
Knight, J. C., Koustoulidou, S. & Cornelissen, B. Imaging the DNA damage response with PET and SPECT. Eur. J. Nucl. Med. Mol. Imaging 44, 1065–1078 (2017). (PMID: 28058462539766210.1007/s00259-016-3604-1)
Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992). (PMID: 154918010.1038/356356a0)
Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980). (PMID: 624374410.1038/283593a0)
Shall, S. ADP-ribose in DNA repair: A new component of DNA excision repair. In Advances in Radiation Biology (ed. Lett, J. T.) 1–69 (Elsevier, 1984).
Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017). (PMID: 28676700659172810.1038/nrm.2017.53)
Michel, L. S. et al. PET of poly (ADP-Ribose) polymerase activity in cancer: Preclinical assessment and first in-human studies. Radiology 282, 453–463 (2017). (PMID: 2784172810.1148/radiol.2016161929)
Makvandi, M. et al. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer. J. Clin. Invest. 128, 2116–2126 (2018). (PMID: 29509546591987910.1172/JCI97992)
Zhou, D. et al. Preliminary evaluation of a novel 18F-labeled PARP-1 ligand for PET imaging of PARP-1 expression in prostate cancer. Nucl. Med. Biol. 66, 26–31 (2018). (PMID: 30195072625211110.1016/j.nucmedbio.2018.08.003)
Szabo, Z. et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol. 17, 565–574 (2015). (PMID: 25896814453183610.1007/s11307-015-0850-8)
Foss, C. A., Mease, R. C., Cho, S. Y., Kim, H. J. & Pomper, M. G. GCPII imaging and cancer. Curr. Med. Chem. 19, 1346–1359 (2012). (PMID: 22304713407679210.2174/092986712799462612)
Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). (PMID: 22460905332002710.1038/nature11003)
Cancer Cell Line Encyclopedia Consortium, and Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015). (PMID: 10.1038/nature15736)
Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S. Retro-orbital injections in mice. Lab Anim. 40, 155–160 (2011). (PMID: 10.1038/laban0511-155)
Jiang, W., Ulmert, D., Simons, B. W., Abou, D. S. & Thorek, D. L. J. The impact of age on radium-223 distribution and an evaluation of molecular imaging surrogates. Nucl. Med. Biol. 62–63, 1–8 (2018). (PMID: 29800797605481410.1016/j.nucmedbio.2018.05.003)
Abou, D. S. et al. Whole-body and microenvironmental localization of radium-223 in naive and mouse models of prostate cancer metastasis. J. Natl. Cancer Inst. 108, 380 (2016). (PMID: 10.1093/jnci/djv380)
Nuñez, J. R., Anderton, C. R. & Renslow, R. S. Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data. PLoS ONE 13, e0199239 (2018). (PMID: 30067751607016310.1371/journal.pone.0199239)
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 2274377210.1038/nmeth.2019)
Kossatz, S. et al. Direct imaging of drug distribution and target engagement of the PARP inhibitor rucaparib. J. Nucl. Med. 59, 1316–1320 (2018). (PMID: 29572258607150610.2967/jnumed.117.205765)
Mateos-Pujante, A., Jiménez, M. C. & Andreu, I. Evaluation of phototoxicity induced by the anticancer drug rucaparib. Sci. Rep. 12, 3434 (2022). (PMID: 35236893889126910.1038/s41598-022-07319-9)
Kummar, S. et al. Advances in using PARP inhibitors to treat cancer. BMC Med. 10, 25 (2012). (PMID: 22401667331282010.1186/1741-7015-10-25)
Sander Effron, S. et al. PARP-1 expression quantified by [18F]FluorThanatrace: A biomarker of response to PARP inhibition adjuvant to radiation therapy. Cancer Biother. Radiopharm. 32, 9–15 (2017). (PMID: 281180405312613)
Thomas, A., Murai, J. & Pommier, Y. The evolving landscape of predictive biomarkers of response to PARP inhibitors. J. Clin. Invest. 128, 1727–1730 (2018). (PMID: 29664016591979810.1172/JCI120388)
Zmuda, F., Malviya, G., Blair, A. & Boyd, M. Synthesis and evaluation of a radioiodinated tracer with specificity for poly (ADP-ribose) polymerase-1 (PARP-1) in vivo. J. Med. 58, 8683–8693 (2015).
Huang, T., Hu, P., Banizs, A. B. & He, J. Initial evaluation of Cu-64 labeled PARPi-DOTA PET imaging in mice with mesothelioma. Bioorg. Med. Chem. Lett. 27, 3472–3476 (2017). (PMID: 28587822572436710.1016/j.bmcl.2017.05.077)
Reiner, T., Keliher, E. J. & Earley, S. Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew. Chem. Int. Ed. Engl. 27, 3472–3476 (2011).
Engelbach, J. A., Jannetti, S. A. & Carney, B. Discriminating radiation injury from recurrent tumor with [18 F] PARPi and amino acid PET in mouse models. EJNMMI Res. 8, 1–10 (2018).
No Comments.