Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Ameliorative Effect of Palm Oil in Aluminum Lactate Induced Biochemical and Histological Implications in Rat Brain.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Gupta L;Gupta L; Sood PK; Sood PK; Nehru B; Nehru B; Sharma S; Sharma S
  • المصدر:
    Biological trace element research [Biol Trace Elem Res] 2023 Jun; Vol. 201 (6), pp. 2843-2853. Date of Electronic Publication: 2022 Jul 22.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Humana Press Country of Publication: United States NLM ID: 7911509 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0720 (Electronic) Linking ISSN: 01634984 NLM ISO Abbreviation: Biol Trace Elem Res Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London, Clifton, N. J.] Humana Press.
    • الموضوع:
    • نبذة مختصرة :
      α-Tocotrienol is one of the major constituents of palm oil. It is a well-known antioxidant and cholesterol-lowering neuroprotectant. To prevent the initiation of Alzheimer's like symptoms, much attention has been shifted to the major role played by antioxidants. Previous epidemiological reports correlate the increasing incidence of developing Alzheimer's disease (AD), to the aluminum (Al) content in drinking water. Al, being a ubiquitous element, has a long history of being particularly reactive towards multiple aspects of neurobiology. So, the current study examines the effect of Al-induced behavioral, biochemical, and histopathological changes in rat brain; and the ameliorative effect of palm oil in reducing the resulting neurotoxicity. The experimental design consisted of 4 groups: control group which received rodent chow diet and water ad libitum; Al group received aluminum lactate (50 mg/kg bw); Al + palm oil group was administered with Al (50 mg/kg bw) and palm oil (60 mg/kg bw); and palm oil group received palm oil (60 mg/kg bw). Al was given by oral gavage once daily for 6 weeks and palm oil was administered intraperitoneally. After 6 weeks of supplementation, Al + palm oil group showed significantly lower malondialdehyde (MDA) content, but higher superoxide dismutase (SOD), catalase (CAT), GST, and GPx activity as compared to Al group. Al group has significantly higher level of MDA content, but lower SOD, CAT, GST, and GPx activity as compared to control group. In conclusion, this study suggested that palm oil was effective in preventing the Al-induced brain damage in rats.
      (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Absalome MA et al (2020) Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie 178:81–95. https://doi.org/10.1016/j.biochi.2020.09.019. (PMID: 10.1016/j.biochi.2020.09.01932966855)
      Ahsan H et al (2014) Pharmacological potential of tocotrienols: a review. Nutr Metab 11(1):52. https://doi.org/10.1186/1743-7075-11-52. (PMID: 10.1186/1743-7075-11-52)
      Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50. https://doi.org/10.1016/j.neuropharm.2013.07.004. (PMID: 10.1016/j.neuropharm.2013.07.00423891641)
      Atia A, Alrawaiq N, Abdullah A (2018) The effect of tocotrienol-rich fraction on the expression of glutathione S-transferase isoenzymes in mice liver. Sains Malays 47:2799–2809. https://doi.org/10.17576/jsm-2018-4711-23. (PMID: 10.17576/jsm-2018-4711-23)
      Baraldi T et al (2013) ‘Cognitive stimulation during lifetime and in the aged phase improved spatial memory, and altered neuroplasticity and cholinergic markers of mice. Exp Gerontol 48(8):831–838. https://doi.org/10.1016/j.exger.2013.05.055. (PMID: 10.1016/j.exger.2013.05.05523707230)
      Baranauskaite J et al (2020) Natural compounds rosmarinic acid and carvacrol counteract aluminium-induced oxidative stress. Molecules (Basel, Switzerland) 25(8):1807. https://doi.org/10.3390/molecules25081807. (PMID: 10.3390/molecules2508180732326410)
      Batool Z et al (2016) Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 120:63–74. https://doi.org/10.1016/j.brainresbull.2015.11.001. (PMID: 10.1016/j.brainresbull.2015.11.00126548495)
      Bayir H et al (2007) ‘Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101(1):168–181. https://doi.org/10.1111/j.1471-4159.2006.04353.x. (PMID: 10.1111/j.1471-4159.2006.04353.x17394464)
      Bhadauria M (2012) Combined treatment of HEDTA and propolis prevents aluminum induced toxicity in rats. Food Chem Toxicol 50(7):2487–2495. https://doi.org/10.1016/j.fct.2011.12.040. (PMID: 10.1016/j.fct.2011.12.04022251571)
      Bhattacharjee S et al (2014) Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci 6:62. https://doi.org/10.3389/fnagi.2014.00062. (PMID: 10.3389/fnagi.2014.00062247827593986683)
      Bondy SC (2016) Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. NeuroToxicology 52:222–229. https://doi.org/10.1016/j.neuro.2015.12.002. (PMID: 10.1016/j.neuro.2015.12.00226687397)
      Budin SB et al (2013) Antioxidant activity of tocotrienol rich fraction prevents fenitrothion-induced renal damage in rats. J Toxicol Pathol 26(2):111–118. https://doi.org/10.1293/tox.26.111. (PMID: 10.1293/tox.26.111239140533695333)
      Callio J, Oury TD, Chu CT (2005) ‘Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 280(18):18536–18542. https://doi.org/10.1074/jbc.M413224200. (PMID: 10.1074/jbc.M41322420015755737)
      Choudhary M, Grover K (2019) Palm (Elaeis guineensis Jacq.) Oil. In: Ramadan MF (ed) Fruit Oils: Chemistry and Functionality. Springer International Publishing, Cham, pp 789–802. https://doi.org/10.1007/978-3-030-12473-1_42. (PMID: 10.1007/978-3-030-12473-1_42)
      Dasari P, Rayapati A, Nayak P (2016) Tocotrienol opposes effect of light to moderate ethanol exposures in elevated plus maze performance of rats. Asian J Pharm Clin Res 9:122–127.
      Doerflinger N et al (1995) Ataxia with vitamin E deficiency: refinement of genetic localization and analysis of linkage disequilibrium by using new markers in 14 families. Am J Hum Genet 56(5):1116–1124. (PMID: 77261671801469)
      Durani L et al (2018) Tocotrienol-rich fraction of palm oil improves behavioral impairments and regulates metabolic pathways in AβPP/PS1 mice. J Alzheimers Dis 64:249–267. https://doi.org/10.3233/JAD-170880. (PMID: 10.3233/JAD-170880298890726004929)
      Ellman GL et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9. (PMID: 10.1016/0006-2952(61)90145-913726518)
      Rondeau V, Commenges D (2001) The epidemiology of aluminium and alzheimer’s disease. In: Exley C (ed) Aluminium and alzheimer’s disease. Elsevier, pp 59–73. https://doi.org/10.1016/B978-044450811-9/50028-8.
      Fatemi SJ, Kadir FH, Moore GR (1991) Aluminium transport in blood serum. Binding of aluminium by human transferrin in the presence of human albumin and citrate. Biochem J 280(Pt 2 Pt 2):527–532. https://doi.org/10.1042/bj2800527. (PMID: 10.1042/bj280052717471281130580)
      Golub MS et al (1993) Influence of dietary aluminum on cytokine production by mitogen-stimulated spleen cells from Swiss Webster mice. Immunopharmacol Immunotoxicol 15(5):605–619. https://doi.org/10.3109/08923979309019733. (PMID: 10.3109/089239793090197338301020)
      Gugliandolo A, Bramanti P, Mazzon E (2017) Role of vitamin E in the treatment of alzheimer’s disease: evidence from animal models. Int J Mol Sci 18(12):2504. https://doi.org/10.3390/ijms18122504.
      Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. (PMID: 10.1016/S0021-9258(19)42083-84436300)
      Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001. (PMID: 10.1016/j.ajme.2017.09.001)
      Ismail M, Alsalahi A, Imam MU, Ooi J, Khaza’ai H, Aljaberi MA, Shamsudin MN, Idrus Z (2020) Safety and neuroprotective efficacy of palm oil and tocotrienol-rich fraction from palm oil: a systematic review. Nutrients 12(2):521. https://doi.org/10.3390/nu12020521. (PMID: 10.3390/nu12020521320856107071496)
      Itoh J, Nabeshima T, Kameyama T (1991) Utility of an elevated plus-maze for dissociation of amnesic and behavioral effects of drugs in mice. Eur J Pharmacol 194(1):71–76. https://doi.org/10.1016/0014-2999(91)90125-a. (PMID: 10.1016/0014-2999(91)90125-a2060594)
      Jayusman PA et al (2014) Effects of palm oil tocotrienol-rich fraction on biochemical and morphological alterations of liver in fenitrothion-treated rats. Pak J Pharm Sci 27(6):1873–1880. (PMID: 25362611)
      Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radical Biol Med 72:76–90. https://doi.org/10.1016/j.freeradbiomed.2014.03.035. (PMID: 10.1016/j.freeradbiomed.2014.03.035)
      Justin Thenmozhi A et al (2017) Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 20(6):360–368. https://doi.org/10.1080/1028415X.2016.1144846. (PMID: 10.1080/1028415X.2016.114484626878879)
      Kaneai N et al (2016) Tocotrienol improves learning and memory deficit of aged rats. J Clin Biochem Nutr 58(2):114–121. https://doi.org/10.3164/jcbn.15-52. (PMID: 10.3164/jcbn.15-52270137774788404)
      Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:276393. https://doi.org/10.4061/2011/276393. (PMID: 10.4061/2011/276393214235543056430)
      Khanna P, Nehru B (2007) Antioxidant enzymatic system in neuronal and glial cells enriched fractions of rat brain after aluminum exposure. Cell Mol Neurobiol 27(7):959–969. https://doi.org/10.1007/s10571-007-9233-2. (PMID: 10.1007/s10571-007-9233-218041579)
      Kim Y et al (2007) ‘Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol 220(3):349–356. https://doi.org/10.1016/j.taap.2007.02.001. (PMID: 10.1016/j.taap.2007.02.001173764973097386)
      Kohila T, Parkkonen E, Tähti H (2004) Evaluation of the effects of aluminium, ethanol and their combination on rat brain synaptosomal integral proteins in vitro and after 90-day oral exposure. Arch Toxicol 78(5):276–282. https://doi.org/10.1007/s00204-003-0530-3. (PMID: 10.1007/s00204-003-0530-315254985)
      Kono Y (1978) ‘Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195. https://doi.org/10.1016/0003-9861(78)90479-4. (PMID: 10.1016/0003-9861(78)90479-424422)
      Kuhad A, Chopra K (2009) Attenuation of diabetic nephropathy by tocotrienol: involvement of NFkB signaling pathway. Life Sci 84(9–10):296–301. https://doi.org/10.1016/j.lfs.2008.12.014. (PMID: 10.1016/j.lfs.2008.12.01419162042)
      Kumar A, Dogra S, Prakash A (2009) Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav Brain Res 205(2):384–390. https://doi.org/10.1016/j.bbr.2009.07.012. (PMID: 10.1016/j.bbr.2009.07.01219616038)
      Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203. https://doi.org/10.1016/j.pharep.2014.09.004. (PMID: 10.1016/j.pharep.2014.09.00425712639)
      Lin W-T et al (2015) Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci Rep 5(1):9671. https://doi.org/10.1038/srep09671. (PMID: 10.1038/srep09671258734294397698)
      Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. (PMID: 10.1016/S0021-9258(19)52451-614907713)
      Lück H (1965) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–894.
      Mancini A et al (2015) Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules (Basel, Switzerland) 20(9):17339–17361. https://doi.org/10.3390/molecules200917339. (PMID: 10.3390/molecules20091733926393565)
      Miyazawa T et al (2009) Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol). J Nutr Biochem 20(2):79–86. https://doi.org/10.1016/j.jnutbio.2008.09.003. (PMID: 10.1016/j.jnutbio.2008.09.00319071006)
      Müller L, Theile K, Böhm V (2010) In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol Nutr Food Res 54(5):731–742. https://doi.org/10.1002/mnfr.200900399. (PMID: 10.1002/mnfr.20090039920333724)
      Packer L, Weber SU, Rimbach G (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr 131(2):369S–73S. https://doi.org/10.1093/jn/131.2.369S. (PMID: 10.1093/jn/131.2.369S11160563)
      Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169. (PMID: 6066618)
      Pearse AGE (1960) Histochemistry, theoretical and applied, 2nd edn. Churchill Livingstone, Edinburgh.
      Ranjan S, Passi SJ, Singh SN (2019) Impact of crude palm oil fortified cookies supplementation on anthropometry, vitamin A and hematological status of school children in India. Int J Vitam Nutr Res 89(5–6):321–330. https://doi.org/10.1024/0300-9831/a000478. (PMID: 10.1024/0300-9831/a00047830932787)
      Resende R et al (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med 44(12):2051–2057. https://doi.org/10.1016/j.freeradbiomed.2008.03.012. (PMID: 10.1016/j.freeradbiomed.2008.03.01218423383)
      Sadikan MZ, Nasir NAA, Agarwal R, Ismail NM (2020) Protective effect of palm oil-derived tocotrienol-rich fraction against retinal neurodegenerative changes in rats with streptozotocin-induced diabetic retinopathy. Biomolecules 10(4):556. https://doi.org/10.3390/biom10040556. (PMID: 10.3390/biom10040556322605447226502)
      Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2–3):135–144. https://doi.org/10.3233/jad-2006-102-302. (PMID: 10.3233/jad-2006-102-30217119283)
      Selvaraju TR et al (2014) The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn J Basic Med Sci 14(4):195–204. https://doi.org/10.17305/bjbms.2014.4.91. (PMID: 10.17305/bjbms.2014.4.91254286704333972)
      Sen CK et al (2007) Tocotrienols: the emerging face of natural vitamin E. Vitam Horm 76:203–261. https://doi.org/10.1016/S0083-6729(07)76008-9. (PMID: 10.1016/S0083-6729(07)76008-9176281763681510)
      Sen CK, Rink C, Khanna S (2010) Palm oil-derived natural vitamin E alpha-tocotrienol in brain health and disease. J Am College Nutrs 29(3 Suppl):314S-323S. https://doi.org/10.1080/07315724.2010.10719846. (PMID: 10.1080/07315724.2010.10719846)
      Senger MR et al (2011) Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain. Cell Biol Toxicol 27(3):199–205. https://doi.org/10.1007/s10565-011-9181-y. (PMID: 10.1007/s10565-011-9181-y21240652)
      Shahidi F, de Camargo AC (2016) Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci 17(10):1745. https://doi.org/10.3390/ijms17101745.
      Sharma DR et al (2016) Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 324:163–176. https://doi.org/10.1016/j.neuroscience.2016.02.055. (PMID: 10.1016/j.neuroscience.2016.02.05526944603)
      Shibata A et al (2010) Suppression of gamma-tocotrienol on UVB induced inflammation in HaCaT keratinocytes and HR-1 hairless mice via inflammatory mediators multiple signaling. J Agric Food Chem 58(11):7013–7020. https://doi.org/10.1021/jf100691g. (PMID: 10.1021/jf100691g20465215)
      Singla N, Dhawan DK (2014) Zinc modulates aluminium-induced oxidative stress and cellular injury in rat brain. Metallomics 6(10):1941–1950. https://doi.org/10.1039/c4mt00097h. (PMID: 10.1039/c4mt00097h25141099)
      Sokol RJ (1989) Vitamin E and neurologic function in man. Free Radic Biol Med 6(2):189–207. https://doi.org/10.1016/0891-5849(89)90117-2. (PMID: 10.1016/0891-5849(89)90117-22651221)
      Sundram K, Sambanthamurthi R, Tan Y-A (2003) Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr 12(3):355–362. (PMID: 14506001)
      Taïr K et al (2016) Aluminium-induced acute neurotoxicity in rats: treatment with aqueous extract of Arthrophytum (Hammada scoparia). J Acute Dis 5(6):470–482. https://doi.org/10.1016/j.joad.2016.08.028. (PMID: 10.1016/j.joad.2016.08.028)
      Taridi NM et al (2014) Tocotrienol rich fraction reverses age-related deficits in spatial learning and memory in aged rats. Lipids 49(9):855–869. https://doi.org/10.1007/s11745-014-3919-2. (PMID: 10.1007/s11745-014-3919-225015768)
      Tiwari V et al (2009) Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharmacol Biochem Behav 93(2):183–189. https://doi.org/10.1016/j.pbb.2009.05.009. (PMID: 10.1016/j.pbb.2009.05.00919464315)
      Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598. https://doi.org/10.3233/JAD-2010-101494. (PMID: 10.3233/JAD-2010-10149421157018)
      Urugo MM et al (2021) Palm oil processing and controversies over its health effect: overview of positive and negative consequences. J Oleo Sci 70(12):1693–1706. https://doi.org/10.5650/jos.ess21160. (PMID: 10.5650/jos.ess2116034759110)
      Wang Z et al (2016) Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett 610:200–206. https://doi.org/10.1016/j.neulet.2015.11.014. (PMID: 10.1016/j.neulet.2015.11.01426592479)
      Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667–676. https://doi.org/10.1042/bj0990667. (PMID: 10.1042/bj099066759649631265056)
      Wu Z et al (2012) Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 33(1):199.e1–12. https://doi.org/10.1016/j.neurobiolaging.2010.06.018. (PMID: 10.1016/j.neurobiolaging.2010.06.01820674094)
      Yuan C-Y, Lee Y-J, Hsu G-SW (2012) Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci 19(1):51. https://doi.org/10.1186/1423-0127-19-51. (PMID: 10.1186/1423-0127-19-51226137823404950)
      Zadeh-Ardabili PM, Rad SK, Rad SK, Khazaài H, Sanusi J, Zadeh MH (2017) Palm vitamin E reduces locomotor dysfunction and morphological changes induced by spinal cord injury and protects against oxidative damage. Sci Rep 7(1):14365. https://doi.org/10.1038/s41598-017-14765-3. (PMID: 10.1038/s41598-017-14765-3290850455662565)
      Zatta P, Lain E, Cagnolini C (2000) Effects of aluminum on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur J Biochem 267(10):3049–3055. https://doi.org/10.1046/j.1432-1033.2000.01328.x. (PMID: 10.1046/j.1432-1033.2000.01328.x10806405)
      Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523. https://doi.org/10.1155/2013/316523. (PMID: 10.1155/2013/316523239838973745981)
    • Grant Information:
      3/1/2/37/09-RHN Indian Council of Medical Research
    • Contributed Indexing:
      Keywords: Aluminum; Alzheimer’s disease; Antioxidant; Oxidative stress; Palm oil; Reactive oxygen species; Tocotrienol
    • الرقم المعرف:
      5QUO05548Z (Palm Oil)
      V797H4GG0Z (aluminum lactate)
      0 (Lactates)
      0 (Aluminum Compounds)
      0 (Antioxidants)
      B6LXL1832Y (tocotrienol, alpha)
      0 (Tocotrienols)
    • الموضوع:
      Date Created: 20220722 Date Completed: 20231016 Latest Revision: 20231016
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s12011-022-03366-5
    • الرقم المعرف:
      35869376