Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modulation of GmFAD3 expression alters abiotic stress responses in soybean.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
    • بيانات النشر:
      Publication: Dordrecht : Kluwer Academic
      Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
    • الموضوع:
    • نبذة مختصرة :
      Key Message: This study focused on enhancing resilience of soybean crops to drought and salinity stresses by overexpression of GmFAD3A gene, which plays an important role in modulating membrane fluidity and ultimately influence plants response to various abiotic stresses. Fatty acid desaturases (FADs) are a class of enzymes that mediate desaturation of fatty acids by introducing double bonds. They play an important role in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of GmFAD3 in drought and salinity stress tolerance in soybean is lacking. We used bean pod mottle virus (BPMV)-based vector for achieving rapid and efficient overexpression as well as silencing of Omega-3 Fatty Acid Desaturase gene from Glycine max (GmFAD3) to assess the functional role of GmFAD3 in abiotic stress responses in soybean. Higher levels of recombinant BPMV-GmFAD3A transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3A in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. The GmFAD3A-overexpressing plants showed higher levels of chlorophyll content, efficient photosystem-II, relative water content, transpiration rate, stomatal conductance, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from the current study revealed that GmFAD3A-overexpressing soybean plants exhibited tolerance to drought and salinity stresses. However, soybean plants silenced for GmFAD3 were vulnerable to drought and salinity stresses.
      (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813. (PMID: 273791154908892)
      Barnes JD, Balaguer ME, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environ Exp Bot 32:85–100. (PMID: 10.1016/0098-8472(92)90034-Y)
      Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. (PMID: 10.1007/BF00018060)
      Bengough A, McKenzie B, Hallett P, Valentine T (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68. (PMID: 2111882410.1093/jxb/erq350)
      Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838. (PMID: 10.2135/cropsci2003.1833)
      Chen LM, Fang YS, Zhang CJ, Hao QN, Cao D, Yuan SL, Chen HF, Yang ZL, Chen SL, Shan ZH, Liu BH, ZhanY J-W, Zhang XJ, Qiu DZ, Li WB, Zhou XA (2019) GmSYP24, a putative syntaxin gene, confers osmotic/drought, salt stress tolerances and ABA signal pathway. Sci Rep 9:5990. (PMID: 30979945646166710.1038/s41598-019-42332-5)
      Cheng ZW, Sun L, Qi TC, Zhang BS, Peng W, Liu YL, Xie DX (2011) The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288. (PMID: 2124232010.1093/mp/ssq073)
      Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. (PMID: 2780196710.1111/tpj.13299)
      Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of ROS and hormone signaling during abiotic stress. Plant J. https://doi.org/10.1111/tpj.15010. (PMID: 10.1111/tpj.1501033015917)
      Diaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA (2011) An effective virus-based gene silencing method for functional genomics studies in common bean. Plant Methods 7:16. (PMID: 21668993314180310.1186/1746-4811-7-16)
      Do TD, Vuong TD, Dunn D, Clubb M, Valliyodan B, Patil G, Chen P, Xu D, Nguyen HT, Shannon JG (2019) Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genom 20:318. (PMID: 10.1186/s12864-019-5662-9)
      Enteshari SH, Jafari T (2013) The effects of methyl jasmonate and salinity on germination and seedling growth in Ocimum basilicum L. stress. Iran J Plant Physiol 3:749–756.
      Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch JP, Foyer CH (2014) Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4:418–435. (PMID: 10.3390/agronomy4030418)
      Finatto T, Viana VE, Woyann LG, Busanello C, da Maia LC, de Oliveira AC (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 41:533–544. (PMID: 30235398613638010.1590/1678-4685-gmb-2017-0232)
      Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850. (PMID: 1825690110.1007/s11248-008-9167-6)
      Gad N (2005) Interactive effect of cobalt and salinity on tomato plants 1-Growth and mineral composition as affected by cobalt and salinity. Res J Agri Biol Sci 1:261–269.
      Goel D, Singh AK, Yadav V, Babbar SB (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141. (PMID: 2046788010.1007/s00709-010-0158-0)
      Goel D, Singh AK, Yadava V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168:1286–1294. (PMID: 2134271610.1016/j.jplph.2011.01.010)
      Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269. (PMID: 3229994610.1126/science.aaz7614)
      Hammer G, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312. (PMID: 10.2135/cropsci2008.03.0152)
      Han S, Wang C, Wang W, Jiang L (2014) Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ −based Na+ flux in root cell under salt stress. J Plant Physiol 171:26–34. (PMID: 2448495510.1016/j.jplph.2013.09.023)
      He J, Du Y, Wang T, Turner N, Yang R, Jin Y, Xi Y, Zhang C, Cui T, Fang X, Li F (2017) Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agr Water Manage 79:236–245. (PMID: 10.1016/j.agwat.2016.07.008)
      Hu Y, Burucs Z, Schmidhalter U (2006) Short-term effect of drought and salinity on growth and mineral elements in wheat seedlings. J Plant Nutr 29:2227–2243. (PMID: 10.1080/01904160600975111)
      Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cell 13:264–271.
      Jaleel C, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105.
      Jamil M, Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES (2007) Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola 64:111–118. (PMID: 10.1590/S0103-90162007000200002)
      Jones HG, Stoll S, Santos T, de Sousa C, Manuela M, Chaves M, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260. (PMID: 1237979210.1093/jxb/erf083)
      Jumrani K, Bhatia VS (2019) Identification of drought tolerant genotypes using physiological traits in soybean. Physiol Mol Biol Plants 25:697–711. (PMID: 31168233652258310.1007/s12298-019-00665-5)
      Kachroo A, Ghabrial SA (2012) Virus-induced gene silencing in soybean. Methods Mol Biol 894:287–297. (PMID: 2267858710.1007/978-1-61779-882-5_19)
      Kachroo A, Fu DQ, Havens W, Navarre DA, Kachroo P, Ghabrial SA (2008) An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol Plant-Microbe Interact 21:564–575. (PMID: 1839361610.1094/MPMI-21-5-0564)
      Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego.
      Kumar M, Govindasamy V, Rane J, Singh AK, Choudhary RL, Raina SK, George P, Aher LK, Singh NP (2017) Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African J Bot 113:230–238. (PMID: 10.1016/j.sajb.2017.08.016)
      Lamers J, van der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182:1624–1635. (PMID: 32132112714092710.1104/pp.19.01464)
      Li B, Liu Y, Cui XY, Fu JD, Zhou YB, Zheng WJ, Lan JH, Jin LG, Chen M, Ma YZ, Xu ZS, Min DH (2019) Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance. Front Plant Sci 10:549. (PMID: 31156656653187610.3389/fpls.2019.00549)
      Li W, Pang S, Lu Z, Jin B (2020) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9:1515. https://doi.org/10.3390/plants9111515. (PMID: 10.3390/plants91115157695288)
      Ma C, Wang ZQ, Zhang LT, Sun MM, Lin TB (2014) Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica 52:377–385. (PMID: 10.1007/s11099-014-0041-x)
      Martín JS, Canales FJ, Tweed JKS, Lee MRF, Rubiales D, Gomez-Cadenas A, Arbona V, Mur LAJ, Prats E (2018) Fatty acid profile changes during gradual soil water depletion in oats suggests a role for jasmonates in coping with drought. Front Plant Sci 9:1077. (PMID: 10.3389/fpls.2018.01077)
      Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Progress Lipid Res 42:527–543. (PMID: 10.1016/S0163-7827(03)00036-5)
      Morant-Manceau A, Pradier E, Tremblin G (2004) Osmotic adjustment, gas exchanges and chlorophyll fluorescence of ahexaploid triticale and its parental species under salt stress. J Plant Physiol 161:25–33. (PMID: 1500266110.1078/0176-1617-00963)
      Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. (PMID: 1184166710.1046/j.0016-8025.2001.00808.x)
      Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673. (PMID: 2610844110.1111/nph.13519)
      Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. (PMID: 10.1146/annurev.arplant.59.032607.092911)
      Mutava R, Prince S, Syed N, Song L, Valliyodan B, Chen W, Nguyen H (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Bioch 86:109–120. (PMID: 10.1016/j.plaphy.2014.11.010)
      Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:330–337. (PMID: 2018535910.1016/j.pbi.2010.01.008)
      Napier JA, Michaelson LV, Stobart AK (1999) Plant desaturases: harvesting the fat of the land. Curr Opin Plant Biol 2:123–127. (PMID: 1032219210.1016/S1369-5266(99)80025-9)
      Negrao S, Schmockel M, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Annal Botany 119:1–11. (PMID: 10.1093/aob/mcw191)
      O’Neillm CM, Baker D, Bennett G, Clarke J, Bancroft J (2011) Two high linolenic mutants of Arabidopsis thaliana contain megabase-scale genome duplications encompassing the FAD3 locus. Plant J 68:912–918. (PMID: 10.1111/j.1365-313X.2011.04742.x)
      Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515. (PMID: 2247687310.1007/s00122-012-1849-z)
      Prince S, Murphy M, Mutava R, Durnell L, Valliyodan B, Shannon J, Nguyen H (2017) Root xylem plasticity to improve water use and yield in water-stressed soybean. J Exp Bot 68:2027–2036. (PMID: 280641765428998)
      Qi TC, Song SS, Ren QC, Wu DW, Huang H, Chen Y, Fan M, Peng W, Ren CM, Xie DX (2011) The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814. (PMID: 21551388312395510.1105/tpc.111.083261)
      Rane J, Sharma D, Ekatpure S, Aher L, Kumar M, Prasad SVS, Nankar AN, Singh NP (2019) Relative tolerance of photosystem II in spike, leaf, and stem of bread and durum wheat under desiccation. Photosynthetica 57:1100–1108. https://doi.org/10.32615/ps.2019.111. (PMID: 10.32615/ps.2019.111)
      Rane J, Babar R, Kumar M, Kumar PS, Singh Y, Nangare DD, Wakchaure GC, Minhas PS (2021a) Desiccation tolerance of Photosystem II in dryland fruit crops. Sci Horticult. https://doi.org/10.1016/j.scienta.2021.110295. (PMID: 10.1016/j.scienta.2021.110295)
      Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV (2021b) The adaptation and tolerance of major cereals and legumes to important abiotic stresses. Int J Mol Sci 22:12970. https://doi.org/10.3390/ijms222312970. (PMID: 10.3390/ijms222312970348847698657814)
      Rane J, Singh AK, Tiwari M, Prasad PVV, Krishna SV (2021c) Effective use of water in crop plants in dryland agriculture: implications of reactive oxygen species and antioxidative system. Front Plant Sci 12:778270. (PMID: 3508280910.3389/fpls.2021.778270)
      Rao SS, El-Habbak MH, Havens WM, Singh AK, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Path 15:145–160. (PMID: 10.1111/mpp.12075)
      Rebetzke GJ, Condon AG, Farquhar RAR, GD, Richards RA, (2013) Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in breadwheat (Triticum aestivum L.). Funct Plant Biol 40:14–26. (PMID: 10.1071/FP12184)
      Robbins NE, Dinneny JR (2018) Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci, USA 115:822–831.
      Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921. (PMID: 2133284510.1111/j.1365-313X.2010.04477.x)
      Shi Y, An L, Zhang M, Huang C, Zhang H, Xu S (2008) Regulation of the plasma membrane during exposure to low temperatures in suspension cultured cells from a cryophyte (Chorispora bungeana). Protoplasma 232:173–181. (PMID: 1842154710.1007/s00709-008-0291-1)
      Shi Y, Yue X, An L (2018) Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. J Exp Bot 69:2131–2148. (PMID: 29432580601903810.1093/jxb/ery050)
      Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial SA, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonialyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212:627–636. (PMID: 2741115910.1111/nph.14078)
      Singh AK, Fu DQ, El-Habbak M, Navarre D, Ghabrial S, Kachroo A (2011) Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean. Mol Plant-Microbe Interact 24:506–515. (PMID: 2111786710.1094/MPMI-09-10-0201)
      Song SS, Qi TC, Huang H, Ren QC, Wu DW, Chang CQ, Peng W, Liu YL, Peng JR, Xie DX (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013. (PMID: 21447791308225010.1105/tpc.111.083089)
      Stavridou E, Hastings A, Webster R, Robson P (2017) The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB Bioenergy 9:92–104. (PMID: 10.1111/gcbb.12351)
      Taria S, Rane J, Alam B, Kumar M, Babar R, Anuragi H, Rajaram K, Singh NP (2019) Combining IR imaging, chlorophyll fluorescence and phenomic approach for assessing diurnal canopy temperature dynamics and desiccation stress management in Azadirachta indica and Terminalia mantaly. Agroforest Syst 94:941–951. (PMID: 10.1007/s10457-019-00461-w)
      Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 9:325–346. (PMID: 10.1007/s12210-008-0022-8)
      Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977. (PMID: 1822797410.1007/s10529-008-9639-z)
      Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421. (PMID: 1732422810.1111/j.1365-3040.2006.01628.x)
      Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336. (PMID: 1513475510.1016/j.pbi.2004.03.012)
      Wang Y, Mostafa S, Zeng W, Jin B (2021) Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci 22:8568. https://doi.org/10.3390/ijms22168568. (PMID: 10.3390/ijms22168568344452728395333)
      Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. (PMID: 17513307274962210.1093/aob/mcm079)
      Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85. (PMID: 2270538710.1016/j.biochi.2012.06.005)
      Wei-Wei J, Yan W, Hui-hui Z, Zhi-li J, Peng W, Xin L, Bing-Bing Y, Guangyu S (2011) Effects of foliar spraying methyl jasmonate on leaf chlorophyll fluorescence characteristics of flue-cured tobacco seedlings under drought and re-watering. Chinese J Appl Ecol 2:3157–3162.
      Xia Y, Gao QM, Yu KS, Lapchyk L, Navarre D, Hildebrand D, Kachroo A, Kachroo P (2009) An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbes 5:151–165. (PMID: 10.1016/j.chom.2009.01.001)
      Yoon JH, Rokem AS, Silver MA, Minzenberg MJ, Ursu S, Ragland JD et al (2009) Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophr Bull 35:1078–1084. (PMID: 19620601276262210.1093/schbul/sbp064)
      Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401–411. (PMID: 1622678010.1016/j.virol.2005.08.046)
      Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371. (PMID: 1623614710.1111/j.1365-313X.2005.02536.x)
      Zhang L, Li T, Wang Y, Zhang Y, Dong YS (2019) FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression. Plant Cell Rep 38:1039–1051. (PMID: 3114411210.1007/s00299-019-02424-y)
      Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503. (PMID: 1838450810.1111/j.1467-7652.2008.00336.x)
      Zhu D, Cai H, Luo X, Bai X, Deyholos MK, Chen Q, Chen C, Ji W, Zhu Y (2012) Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochem Biophys Res Commun 426:273–279. (PMID: 2294385510.1016/j.bbrc.2012.08.086)
      Zivcak M, Brestic M, Olsovska K (2008) Application of photosynthetic parameters in screening of wheat, Triticum aestivum L. genotypes for improved drought and high temperature tolerance. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis: energy from the sun. Springer, Dordrecht. Vaz, pp 1247–1250. (PMID: 10.1007/978-1-4020-6709-9_269)
    • Grant Information:
      NASF/GTR-6035/2018-19 Indian Council of Agricultural Research-National Agriculture Science Fund
    • Contributed Indexing:
      Keywords: Bean pod mottle virus; Drought stress; Fatty acid desaturase; Gene silencing; Jasmonic acid; Overexpression; Salinity stress; WRKY transcription factor
    • الرقم المعرف:
      0 (Plant Proteins)
    • الموضوع:
      Bean pod mottle virus
    • الموضوع:
      Date Created: 20220702 Date Completed: 20220914 Latest Revision: 20231213
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s11103-022-01295-4
    • الرقم المعرف:
      35779188