Item request has been placed!
×
Item request cannot be made.
×

Identification of major carotenoids from green alga Tetraspora sp. CU2551: partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Maswanna T;Maswanna T; Maneeruttanarungroj C; Maneeruttanarungroj C; Maneeruttanarungroj C
- المصدر:
World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2022 Jun 11; Vol. 38 (8), pp. 129. Date of Electronic Publication: 2022 Jun 11.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
- بيانات النشر: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990- - الموضوع:
- نبذة مختصرة : The green algae Tetraspora sp. CU2551 was previously identified as a strain with high potential for biohydrogen production; however, its algal biomass characteristics changed from green to reddish orange within 43 days of biohydrogen production. The crude pigments were extracted, partially purified, and characterized by chemical determination. The present study focused on elucidating the carotenoid composition of the selected green alga Tetraspora sp. CU2551. The pigment extract was partially purified and fractionated using thin layer chromatography, and yielded two major and two minor carotenoid bands. The fractions were confirmed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) before being identified and confirmed using Liquid Chromatograph-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS). The spectral data of these fractions revealed four sub-fractions of interest that were lutein, canthaxanthin, neochrome, and β-carotene, which had percentages in the crude extracts of 30.57%, 25.47%, 7.89%, and 0.71%, respectively. Lutein and canthaxanthin were found to be the major carotenoid pigments present. Our findings in this present study are the first reporting of Tetraspora sp. CU2551 as a potential alternate source for carotenoid pigment production.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.) - References: Ahmad N, Mounsef J, Lteif R (2021) A simple and fast experimental protocol for the extraction of xanthophylls from microalga Chlorella luteoviridis. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2021.1901231. (PMID: 10.1080/10826068.2021.190123133775206)
Ahmed F, Fanning K, Netzel M, Turner W, Li Y, Schenk PM (2014) Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem 165:300–306. https://doi.org/10.1016/j.foodchem.2014.05.107. (PMID: 10.1016/j.foodchem.2014.05.10725038679)
Barker FM, Snodderly DM, Johnson EJ, Schalch W, Koepcke W, Gerss J, Neuringer M (2011) Nutritional manipulation of primate retinas, V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Investig Ophthalmol Visual Sci 52(7):3934–3942. https://doi.org/10.1167/iovs.10-5898. (PMID: 10.1167/iovs.10-5898)
Bera S, Bharadwaj V, Chaudhuri S, Dutta D (2015) Strong antioxidant property of bacterial canthaxanthin obtained by raw coconut water supplementation as an additional nutrient source. Biomed Mater Eng. https://doi.org/10.17758/UR.U0315205. (PMID: 10.17758/UR.U0315205)
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66. https://doi.org/10.1016/j.preteyeres.2015.10.003. (PMID: 10.1016/j.preteyeres.2015.10.00326541886)
Beutner S, Bloedorn B, Frixel S, Blanco IH (2001) Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of β-carotene in antioxidant functions. J Sci Food Agric 81:559–568. (PMID: 10.1002/jsfa.849)
Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x. (PMID: 10.1034/j.1399-3054.2000.108002111.x)
Castangia I, Manca ML, Razavi SH, Nacher A, Diez-Sales O, Peris JE, Allaw M, Terencio MC, Usach I, Manconi M (2022) Canthaxanthin biofabrication, loading in green phospholipid vesicles and evaluation of in vitro protection of cells and promotion of their monolayer regeneration. Biomedicines 10(1):157. https://doi.org/10.3390/biomedicines10010157. (PMID: 10.3390/biomedicines10010157350528368773935)
Chaiyaso T, Manowattana A (2018) Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507. Prep Biochem Biotechnol 48(1):13–23. https://doi.org/10.1080/10826068.2017.1381620. (PMID: 10.1080/10826068.2017.138162029035150)
Chang CS, Chang CL, Lai GH (2013) Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, beta-carotene, and canthaxanthin. Kaohsiung J Med Sci 29(8):412–421. https://doi.org/10.1016/j.kjms.2012.12.002. (PMID: 10.1016/j.kjms.2012.12.00223906231)
Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112:217–226. https://doi.org/10.1016/0044-8486(93)90447-7. (PMID: 10.1016/0044-8486(93)90447-7)
Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156. https://doi.org/10.1104/pp.113.235119. (PMID: 10.1104/pp.113.235119245671883982768)
Deli J, Gonda S, Nagy LZ, Szabó GG, Agócs A, Marton K, Vasas G (2014) Carotenoid composition of three bloom-forming algae species. Food Res Int 65:215–223. https://doi.org/10.1016/j.foodres.2014.05.020. (PMID: 10.1016/j.foodres.2014.05.020)
Di Mascio P, Murphy ME, Sies H (1991) Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53(1):194S-200S. https://doi.org/10.1093/ajcn/53.1.194S. (PMID: 10.1093/ajcn/53.1.194S1985387)
Egeland G, Garrido J, Clementson L, Andresen K, Thomas C, Zapata M, Airs R, Llewellyn C, Newman G, Rodríguez F, Roy S (2011) Part VI: Data sheets aiding identification of phytoplankton carotenoids and chlorophylls. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, New York, pp 665–822.
Eggersdorfer M, Wyss A (2018) Carotenoids in human nutrition and health. Arch Biochem Biophys 652:18–26. https://doi.org/10.1016/j.abb.2018.06.001. (PMID: 10.1016/j.abb.2018.06.00129885291)
Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61(6):1600469. https://doi.org/10.1002/mnfr.201600469. (PMID: 10.1002/mnfr.201600469)
Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466–488. https://doi.org/10.3390/nu6020466. (PMID: 10.3390/nu6020466244732313942711)
Fu W, Paglia G, Magnusdottir M, Steinarsdottir EA, Gudmundsson S, Palsson BO, Andresson OS, Brynjolfsson S (2014) Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb Cell Fact 13:3. https://doi.org/10.1186/1475-2859-13-3. (PMID: 10.1186/1475-2859-13-3243974333893366)
Gallego-Cartagena E, Castillo-Ramirez M, Martinez-Burgos W (2019) Effect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunaliella salina. Saudi J Biol Sci 26(7):1325–1330. https://doi.org/10.1016/j.sjbs.2019.07.010. (PMID: 10.1016/j.sjbs.2019.07.010317625916864209)
Grodstein F, Kang JH, Glynn RJ, Cook NR, Gaziano JM (2007) A randomized trial of beta carotene supplementation and cognitive function in men: the physicians’ health study II. Arch Intern Med 167(20):2184–2190. https://doi.org/10.1001/archinte.167.20.2184. (PMID: 10.1001/archinte.167.20.218417998490)
Gurmu F, Hussein S, Laing M (2014) the potential of orange fleshed sweet potato to prevent vitamin a deficiency in Africa. Int J Vitam Nutr Res 84(1–2):65–78. https://doi.org/10.1024/0300-9831/a000194. (PMID: 10.1024/0300-9831/a00019425835237)
Hammond BR Jr (2008) Possible role for dietary lutein and zeaxanthin in visual development. Nutr Rev 66(12):695–702. https://doi.org/10.1111/j.1753-4887.2008.00121.x. (PMID: 10.1111/j.1753-4887.2008.00121.x19019038)
Hammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W (2014) A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Invest Ophthalmol Visual Sci 55(12):8583–8589. https://doi.org/10.1167/iovs.14-15573. (PMID: 10.1167/iovs.14-15573)
Henriksen BS, Chan GM (2014) Importance of carotenoids in optimizing eye and brain development. J Pediatr Gastroenterol Nutr 59(5):552. https://doi.org/10.1097/MPG.0000000000000471. (PMID: 10.1097/MPG.000000000000047124979476)
Ishida BK, Chapman MH (2009) Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 57:1051–1059. https://doi.org/10.1021/jf8026292. (PMID: 10.1021/jf802629219138083)
Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S, Kondo K (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7(4):216–222. https://doi.org/10.5551/jat1994.7.216. (PMID: 10.5551/jat1994.7.21611521685)
Jin H, Lao YM, Zhou J, Zhang HJ, Cai ZH (2017) Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis. J Chromatogr A 1488:93–103. https://doi.org/10.1016/j.chroma.2017.01.088. (PMID: 10.1016/j.chroma.2017.01.08828179080)
Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5(2):56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x. (PMID: 10.1046/j.1523-5408.2002.00004.x12134711)
Johnson EJ, McDonald K, Caldarella SM, Chung HY, Troen AM, Snodderly DM (2008) Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr Neurosci 11(2):75–83. https://doi.org/10.1179/147683008X301450. (PMID: 10.1179/147683008X30145018510807)
Kao TH, Chen CJ, Chen BH (2011) Carotenoid composition in Rhinacanthus nasutus (L.) Kurz as determined by HPLC-MS and affected by freeze-drying and hot-air-drying. Analyst 136(15):3194. https://doi.org/10.1039/c1an15090a. (PMID: 10.1039/c1an15090a21698314)
Kolber Z, Zehr J, Falkowski P (1988) Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. Plant Physiol 88(3):923–929. https://doi.org/10.1104/pp.88.3.923. (PMID: 10.1104/pp.88.3.923166664051055683)
Kopcke W, Krutmann J (2008) Protection from sunburn with beta-Carotene–a meta-analysis. Photochem Photobiol 84(2):284–288. https://doi.org/10.1111/j.1751-1097.2007.00253.x. (PMID: 10.1111/j.1751-1097.2007.00253.x18086246)
Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M (2016) Rhodotorula glutinis — potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 100(14):6103–6117. https://doi.org/10.1007/s00253-016-7611-8. (PMID: 10.1007/s00253-016-7611-8272090394916194)
Kot AM, Blazejak S, Gientka I, Kieliszek M, Brys J (2018) Torulene and torularhodin: “new” fungal carotenoids for industry? Microb Cell Fact 17(1):49. https://doi.org/10.1186/s12934-018-0893-z. (PMID: 10.1186/s12934-018-0893-z295877555870927)
Kot AM, Blazejak S, Kieliszek M, Gientka I, Brys J, Reczek L, Pobiega K (2019) Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by rhodotorula yeast strains in media containing agro-industrial waste. World J Microbiol Biotechnol 35(10):157. https://doi.org/10.1007/s11274-019-2732-8. (PMID: 10.1007/s11274-019-2732-8315764456773817)
Kot AM, Błażejak S, Kieliszek M, Gientka I, Piwowarek K, Brzezińska R (2020) Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatal Agric Biotechnol 26:101634. https://doi.org/10.1016/j.bcab.2020.101634. (PMID: 10.1016/j.bcab.2020.101634)
Kot AM, Błażejak S, Brzezińska R, Sęk W, Kieliszek M (2021) Effect of selected cations and B vitamins on the biosynthesis of carotenoids by Rhodotorula mucilaginosa yeast in the media with agro-industrial wastes. Appl Sci 11(24):11886. https://doi.org/10.3390/app112411886. (PMID: 10.3390/app112411886)
Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516. https://doi.org/10.1016/j.mam.2005.10.001. (PMID: 10.1016/j.mam.2005.10.00116309738)
Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385(1):28–40. https://doi.org/10.1006/abbi.2000.2171. (PMID: 10.1006/abbi.2000.217111361022)
Lawton RJ, Cole AJ, Roberts DA, Paul NA, de Nys R (2017) The industrial ecology of freshwater macroalgae for biomass applications. Algal Res 24:486–491. https://doi.org/10.1016/j.algal.2016.08.019. (PMID: 10.1016/j.algal.2016.08.019)
Leermakers ET, Darweesh SK, Baena CP, Moreira EM, Melo van Lent D, Tielemans MJ, Muka T, Vitezova A, Chowdhury R, Bramer WM, Kiefte-de Jong JC, Felix JF, Franco OH (2016) The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr 103(2):481–494. https://doi.org/10.3945/ajcn.115.120931. (PMID: 10.3945/ajcn.115.12093126762372)
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H (2021) Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments. Bioresour Technol 337:125398. https://doi.org/10.1016/j.biortech.2021.125398. (PMID: 10.1016/j.biortech.2021.12539834139560)
Loughman J, Nolan JM, Howard AN, Connolly E, Meagher K, Beatty S (2012) The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest Ophthalmol Visual Sci 53(12):7871–7880. https://doi.org/10.1167/iovs.12-10690. (PMID: 10.1167/iovs.12-10690)
Lv H, Cui X, Wahid F, Xia F, Zhong C, Jia S (2016) Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS ONE 11(3):1–19. https://doi.org/10.1371/journal.pone.0152226. (PMID: 10.1371/journal.pone.0152226)
Ma R, Zhao X, Xie Y, Ho SH, Chen J (2019) Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresour Technol 275:416–420. https://doi.org/10.1016/j.biortech.2018.12.109. (PMID: 10.1016/j.biortech.2018.12.10930626542)
Machmudah S, Goto M (2013) Methods for Extraction and Analysis of Carotenoids. Natural Products, Berlin, pp 3367–3411.
Maneeruttanarungroj C, Lindblad P, Incharoensakdi A (2010) A newly isolated green alga, tetraspora sp. CU2551, from Thailand with efficient hydrogen production. Int J Hydrog Energy 35(24):13193–13199. https://doi.org/10.1016/j.ijhydene.2010.08.096. (PMID: 10.1016/j.ijhydene.2010.08.096)
Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74(1):1–16. https://doi.org/10.1007/s11418-019-01364-x. (PMID: 10.1007/s11418-019-01364-x31588965)
Maswanna T, Phunpruch S, Lindblad P, Maneeruttanarungroj C (2018) Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp CU2551 grown under anaerobic condition. Biomass Bioenerg 111:88–95. https://doi.org/10.1016/j.biombioe.2018.01.005. (PMID: 10.1016/j.biombioe.2018.01.005)
Maswanna T, Lindblad P, Maneeruttanarungroj C (2020) Improved biohydrogen production by immobilized cells of the green alga tetraspora sp. CU2551 incubated under aerobic condition. J Appl Phycol 32(5):2937–2945. https://doi.org/10.1007/s10811-020-02184-3. (PMID: 10.1007/s10811-020-02184-3)
McNulty HP, Byun J, Lockwood SF, Jacob RF, Mason RP (2007) Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta 1768(1):167–174. https://doi.org/10.1016/j.bbamem.2006.09.010. (PMID: 10.1016/j.bbamem.2006.09.01017070769)
Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2007) Relationship between the colour and the chemical structure of carotenoid pigment. Food Chem 101:1145–1150. https://doi.org/10.1016/j.foodchem.2006.03.015. (PMID: 10.1016/j.foodchem.2006.03.015)
Melendez-Martinez AJ, Stinco CM, Mapelli-Brahm P (2019) Skin carotenoids in public health and nutricosmetics: the emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients 11(5):1093. https://doi.org/10.3390/nu11051093. (PMID: 10.3390/nu110510936566388)
Mendes-Pinto M, Raposo M, Bowen J, Young R, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococus pluvialis: effects on astraxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24. https://doi.org/10.1023/a:1008183429747. (PMID: 10.1023/a:1008183429747)
Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 61:141. (PMID: 10.1351/pac199163010141)
Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA (1997) Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 418(1–2):91–97. https://doi.org/10.1016/s0014-5793(97)01355-0. (PMID: 10.1016/s0014-5793(97)01355-09414102)
Nabi F, Arain MA, Rajput N, Alagawany M, Soomro J, Umer M, Soomro F, Wang Z, Ye R, Liu J (2020) Health benefits of carotenoids and potential application in poultry industry: a review. J Anim Physiol Anim Nutr 104(6):1809–1818. https://doi.org/10.1111/jpn.13375. (PMID: 10.1111/jpn.13375)
Novoveska L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17(11):640. https://doi.org/10.3390/md17110640. (PMID: 10.3390/md171106406891288)
Pashkow FJ, Watumull DG, Campbell CL (2008) Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101(10A):58D-68D. https://doi.org/10.1016/j.amjcard.2008.02.010. (PMID: 10.1016/j.amjcard.2008.02.01018474276)
Pitacco W, Samori C, Pezzolesi L, Gori V, Grillo A, Tiecco M, Vagnoni M, Galletti P (2022) Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid. Food Chem 379:132156. https://doi.org/10.1016/j.foodchem.2022.132156. (PMID: 10.1016/j.foodchem.2022.13215635065488)
Ramos A, Coesel S, Marques A, Rodrigues M, Baumgartner A, Noronha J, Rauter A, Brenig B, Varela J (2008) Isolation and characterization of a stress-inducible Dunaliella salina Lcy-b gene encoding a functional lycopene beta-cyclase. Appl Microbiol Biotechnol 79:819–828. https://doi.org/10.1007/s00253-008-1492-4. (PMID: 10.1007/s00253-008-1492-418461318)
Rao AR, Baskaran V, Sarada R, Ravishankar GA (2013) In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass — a repeated dose study. Food Res Int 54:711–717. https://doi.org/10.1016/j.foodres.2013.07.067. (PMID: 10.1016/j.foodres.2013.07.067)
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM (2021) Carotenoids and some other pigments from fungi and yeasts. Metabolites 11(2):92. https://doi.org/10.3390/metabo11020092. (PMID: 10.3390/metabo11020092335619857915786)
Rebelo BA, Farrona S, Ventura MR, Abranches R (2020) Canthaxanthin, a red-hot carotenoid: applications, synthesis, and biosynthetic evolution. Plants 9(8):1039. https://doi.org/10.3390/plants9081039. (PMID: 10.3390/plants90810397463686)
Reinhart S, Paul WM (1991) The Acari: Reproduction, development and life-history strategies. Springer, Netherlands.
Rodrigues DB, Flores Érico MM, Barin JB, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2014) Production of carotenoids from microalgae cultivated using agroindustrial waste. Food Res Int 65:144–148. https://doi.org/10.1016/j.foodres.2014.06.037. (PMID: 10.1016/j.foodres.2014.06.037)
Rosa AP, Scher A, Sorbara JO, Boemo LS, Forgiarini J, Londero A (2012) Effects of canthaxanthin on the productive and reproductive performance of broiler breeders. Poult Sci 91(3):660–666. https://doi.org/10.3382/ps.2011-01582. (PMID: 10.3382/ps.2011-0158222334741)
Saini RK, Keum YS (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103. https://doi.org/10.1016/j.foodchem.2017.07.099. (PMID: 10.1016/j.foodchem.2017.07.09928946359)
Sano Y, Endo K, Tomo T, Noguchi T (2015) Modified molecular interactions of the pheophytin and plastoquinone electron acceptors in photosystem II of chlorophyll D-containing acaryochloris marina as revealed by FTIR spectroscopy. Photosynth Res 125(1–2):105–114. https://doi.org/10.1007/s11120-014-0073-x. (PMID: 10.1007/s11120-014-0073-x25560630)
Schwender J, Gemunden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212(3):416–423. https://doi.org/10.1007/s004250000409. (PMID: 10.1007/s00425000040911289606)
Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J, Lipski A (2020) Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 10(1):330. https://doi.org/10.1038/s41598-019-57006-5. (PMID: 10.1038/s41598-019-57006-5319419156962212)
Sindhu ER, Preethi KC, Kuttan R (2010) Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian J Exp Biol 48(8):843–848. (PMID: 21341544)
Sivathanu B, Palaniswamy S (2012) Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomed Prev Nutr 2:276–282. https://doi.org/10.1016/j.bionut.2012.04.006. (PMID: 10.1016/j.bionut.2012.04.006)
Stahl W, Sies H (2012) Beta-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr 96(5):1179S-1184S. https://doi.org/10.3945/ajcn.112.034819. (PMID: 10.3945/ajcn.112.03481923053552)
Subczynski WK, Markowska E, Sielewiesiuk J (1991) Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers an. EPR spin label study. Biochim Biophys Acta 1068(1):68–72. https://doi.org/10.1016/0005-2736(91)90061-c. (PMID: 10.1016/0005-2736(91)90061-c1654104)
Surai PF (2012) The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick Part 1. Worlds Poult Sci J 68(3):465–475. https://doi.org/10.1017/S0043933912000578. (PMID: 10.1017/S0043933912000578)
Takaichi S, Mochimaru M, Maoka T, Katoh H (2005) Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from anabaena sp. PCC 7120 and nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol 46(3):497–504. https://doi.org/10.1093/pcp/pci049. (PMID: 10.1093/pcp/pci04915695449)
Terao J (1989) Antioxidant activity of beta-carotene-related carotenoids in solution. Lipids 24(7):659–661. https://doi.org/10.1007/BF02535085. (PMID: 10.1007/BF025350852779372)
Torres-Montilla S, Rodriguez-Concepcion M (2021) Making extra room for carotenoids in plant cells: new opportunities for biofortification. Prog Lipid Res 84:101128. https://doi.org/10.1016/j.plipres.2021.101128. (PMID: 10.1016/j.plipres.2021.10112834530006)
Varela JC, Pereira H, Vila M, Leon R (2015) Production of carotenoids by microalgae: achievements and challenges. Photosynth Res 125(3):423–436. https://doi.org/10.1007/s11120-015-0149-2. (PMID: 10.1007/s11120-015-0149-225921207)
Vila E, Hornero-Mendez D, Azziz G, Lareo C, Saravia V (2019) Carotenoids from heterotrophic bacteria isolated from fildes peninsula, king george island. Antarctica Biotechnol Rep 21:306. https://doi.org/10.1016/j.btre.2019.e00306. (PMID: 10.1016/j.btre.2019.e00306)
Wang N, Manabe Y, Sugawara T, Paul NA, Zhao J (2018) Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chem 242:247–255. https://doi.org/10.1016/j.foodchem.2017.09.075. (PMID: 10.1016/j.foodchem.2017.09.07529037686)
Wannachod T, Wannasutthiwat S, Powtongsook S, Nootong K (2018) Photoautotrophic cultivating options of freshwater green microalgal Chlorococcum humicola for biomass and carotenoid production. Prep Biochem Biotechnol 48(4):335–342. https://doi.org/10.1080/10826068.2018.1446152. (PMID: 10.1080/10826068.2018.144615229513632)
Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta 1336(1):33–42. https://doi.org/10.1016/s0304-4165(97)00006-8. (PMID: 10.1016/s0304-4165(97)00006-89271248)
Xie Y, Jun L, Ruijuan M, Shih-Hsin H, Xinguo S, Lemian L, Jianfeng C (2019) Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60. Bioresour Technol 290:121798. https://doi.org/10.1016/j.biortech.2019.121798. (PMID: 10.1016/j.biortech.2019.12179831325840)
Yao Y, Qiu QH, Wu XW, Cai ZY, Xu S, Liang XQ (2013) Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition 29(7–8):958–964. https://doi.org/10.1016/j.nut.2012.10.017. (PMID: 10.1016/j.nut.2012.10.01723360692)
Yoshida H, Yanai H, Ito K, Tomono Y, Koikeda T, Tsukahara H, Tada N (2010) Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 209(2):520–523. https://doi.org/10.1016/j.atherosclerosis.2009.10.012. (PMID: 10.1016/j.atherosclerosis.2009.10.01219892350)
Yoshihiko N, Satoshi A, Satoko M, Toshio O (1993) Production of anthocyanins, carotenoids, and proanthocyanidins by cultured cells of rabbiteye blueberry (Vaccinium ashei Reade). Biosci Biotechnol Biochem 57(5):770–774. https://doi.org/10.1271/bbb.57.770. (PMID: 10.1271/bbb.57.770)
Zhang LX, Cooney RV, Bertram JS (1991) Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12(11):2109–2114. https://doi.org/10.1093/carcin/12.11.2109. (PMID: 10.1093/carcin/12.11.21091934296)
Zhang P, Li Z, Lu L, Xiao Y, Liu J, Guo J, Fang F (2017) Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochim Acta A 181:30–38. https://doi.org/10.1016/j.saa.2017.03.022. (PMID: 10.1016/j.saa.2017.03.022) - Grant Information: 2563-02-05-26 King Mongkut's Institute of Technology Ladkrabang
- Contributed Indexing: Keywords: Carotenoids; Green algae; Identification; Pigments; Separation; Tetraspora sp. CU2551
- الرقم المعرف: 0 (Xanthophylls)
0 (neochrome)
01YAE03M7J (beta Carotene)
36-88-4 (Carotenoids)
4C3C6403MU (Canthaxanthin)
X72A60C9MT (Lutein) - الموضوع: Date Created: 20220610 Date Completed: 20220614 Latest Revision: 20220614
- الموضوع: 20250114
- الرقم المعرف: 10.1007/s11274-022-03320-6
- الرقم المعرف: 35689122
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.