Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin Springer Verlag
    • الموضوع:
    • نبذة مختصرة :
      Aims/hypothesis: We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction.
      Methods: Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions.
      Results: Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05).
      Conclusions/interpretation: This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
      (© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.)
    • References:
      Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A (2018) Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 8(2):773–799. https://doi.org/10.1002/cphy.c170019. (PMID: 10.1002/cphy.c170019296879026586018)
      Forbes JM, Fotheringham AK (2017) Vascular complications in diabetes: old messages, new thoughts. Diabetologia 60(11):2129–2138. https://doi.org/10.1007/s00125-017-4360-x. (PMID: 10.1007/s00125-017-4360-x28725914)
      Murphy MP, Corriveau RA, Wilcock DM (2016) Vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta 1862(5):857–859. https://doi.org/10.1016/j.bbadis.2016.02.010. (PMID: 10.1016/j.bbadis.2016.02.01026921818)
      Cukierman-Yaffe T, Gerstein HC, Williamson JD et al (2009) Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial. Diabetes Care 32(2):221–226. https://doi.org/10.2337/dc08-1153. (PMID: 10.2337/dc08-1153191717352628683)
      Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439. https://doi.org/10.1152/physrev.00034.2006. (PMID: 10.1152/physrev.00034.200617928588)
      Gonzalez C, Beruto V, Keller G, Santoro S, Di Girolamo G (2006) Investigational treatments for Type 2 diabetes mellitus: exenatide and liraglutide. Expert Opin Investig Drugs 15(8):887–895. https://doi.org/10.1517/13543784.15.8.887. (PMID: 10.1517/13543784.15.8.88716859392)
      Scheen AJ, Paquot N (2018) Management of hyperglycaemia of type 2 diabetes. Paradigm change according to the ADA-EASD consensus report 2018. Rev Med Liege 73(12):629–633. (PMID: 30570234)
      Palleria C, Leo A, Andreozzi F et al (2017) Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects. Behav Brain Res 321:157–169. https://doi.org/10.1016/j.bbr.2017.01.004. (PMID: 10.1016/j.bbr.2017.01.00428062257)
      Roan JN, Hsu CH, Fang SY et al (2018) Exendin-4 improves cardiovascular function and survival in flow-induced pulmonary hypertension. J Thorac Cardiovasc Surg 155(4):1661–1669 e1664. https://doi.org/10.1016/j.jtcvs.2017.10.085. (PMID: 10.1016/j.jtcvs.2017.10.08529249493)
      Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta 1863(5):1037–1045. https://doi.org/10.1016/j.bbadis.2016.04.017. (PMID: 10.1016/j.bbadis.2016.04.017)
      Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464. https://doi.org/10.1215/S1152851705000232. (PMID: 10.1215/S1152851705000232162128101871727)
      Warmke N, Griffin KJ, Cubbon RM (2016) Pericytes in diabetes-associated vascular disease. J Diabetes Complications 30(8):1643–1650. https://doi.org/10.1016/j.jdiacomp.2016.08.005. (PMID: 10.1016/j.jdiacomp.2016.08.00527592245)
      Edelman DA, Jiang Y, Tyburski J, Wilson RF, Steffes C (2006) Pericytes and their role in microvasculature homeostasis. J Surg Res 135(2):305–311. https://doi.org/10.1016/j.jss.2006.06.010. (PMID: 10.1016/j.jss.2006.06.01016930620)
      Ergul A, Abdelsaid M, Fouda AY, Fagan SC (2014) Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.2014.18.
      Coucha M, Barrett AC, Elgebaly M, Ergul A, Abdelsaid M (2019) Inhibition of Ephrin-B2 in brain pericytes decreases cerebral pathological neovascularization in diabetic rats. PLoS One 14(1):e0210523. https://doi.org/10.1371/journal.pone.0210523. (PMID: 10.1371/journal.pone.0210523306207536324788)
      Abdelsaid M, Coucha M, Hafez S, Yasir A, Johnson MH, Ergul A (2017) Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia 60(4):740–750. https://doi.org/10.1007/s00125-017-4214-6. (PMID: 10.1007/s00125-017-4214-6281164605342922)
      Shan Y, Tan S, Lin Y et al (2019) The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation 16(1):242. https://doi.org/10.1186/s12974-019-1638-6. (PMID: 10.1186/s12974-019-1638-6317796526883580)
      Abdelwahed OM, Tork OM, Gamal El Din MM, Rashed L, Zickri M (2018) Effect of glucagon-like peptide-1 analogue; Exendin-4, on cognitive functions in type 2 diabetes mellitus; possible modulation of brain derived neurotrophic factor and brain Visfatin. Brain Res Bull 139:67–80. https://doi.org/10.1016/j.brainresbull.2018.02.002. (PMID: 10.1016/j.brainresbull.2018.02.00229421245)
      Abdul Y, Abdelsaid M, Li W et al (2019) Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Mol Neurobiol 56(3):1607–1617. https://doi.org/10.1007/s12035-018-1184-8. (PMID: 10.1007/s12035-018-1184-829909454)
      Abdelsaid M, Prakash R, Li W et al (2015) Metformin treatment in the period after stroke prevents nitrative stress and restores angiogenic signaling in the brain in diabetes. Diabetes 64(5):1804–1817. https://doi.org/10.2337/db14-1423. (PMID: 10.2337/db14-142325524911)
      Egholm C, Khammy MM, Dalsgaard T et al (2016) GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol 311(5):H1214–H1224. https://doi.org/10.1152/ajpheart.00316.2016. (PMID: 10.1152/ajpheart.00316.201627638877)
      Pang B, Zhou H, Kuang H (2018) The potential benefits of glucagon-like peptide-1 receptor agonists for diabetic retinopathy. Peptides 100:123–126. https://doi.org/10.1016/j.peptides.2017.08.003. (PMID: 10.1016/j.peptides.2017.08.00328807775)
      Jojima T, Uchida K, Akimoto K et al (2017) Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis 261:44–51. https://doi.org/10.1016/j.atherosclerosis.2017.04.001. (PMID: 10.1016/j.atherosclerosis.2017.04.00128445811)
      Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2017) Pericytes as Inducers of Rapid, Matrix Metalloproteinase-9-Dependent Capillary Damage during Ischemia. J Neurosci 37(1):129–140. https://doi.org/10.1523/JNEUROSCI.2891-16.2016. (PMID: 10.1523/JNEUROSCI.2891-16.2016280530365214626)
      Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20(26):3218–3225. https://doi.org/10.2174/09298673113209990022. (PMID: 10.2174/0929867311320999002223745544)
      Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 10(4):e0124521. https://doi.org/10.1371/journal.pone.0124521. (PMID: 10.1371/journal.pone.0124521258865634401674)
      Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp 84:e51194. https://doi.org/10.3791/51194. (PMID: 10.3791/51194)
      Peng X, Shi X, Huang J et al (2021) Exendin-4 Improves Cognitive Function of Diabetic Mice via Increasing Brain Insulin Synthesis. Curr Alzheimer Res. https://doi.org/10.2174/1567205018666210929150004.
      Lyu F, Wu D, Wei C, Wu A (2020) Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci 254:117771. https://doi.org/10.1016/j.lfs.2020.117771. (PMID: 10.1016/j.lfs.2020.11777132437791)
      Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 8:388. https://doi.org/10.3389/fncel.2014.00388. (PMID: 10.3389/fncel.2014.00388254777824238323)
      Fouda AY, Fagan SC, Ergul A (2019) Brain Vasculature and Cognition. Arterioscler Thromb Vasc Biol 39(4):593–602. https://doi.org/10.1161/ATVBAHA.118.311906. (PMID: 10.1161/ATVBAHA.118.311906308167986540805)
      Inoue T, Inoguchi T, Sonoda N et al (2015) GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 240(1):250–259. https://doi.org/10.1016/j.atherosclerosis.2015.03.026. (PMID: 10.1016/j.atherosclerosis.2015.03.02625818251)
      Buse JB, Henry RR, Han J et al (2004) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27(11):2628–2635. https://doi.org/10.2337/diacare.27.11.2628. (PMID: 10.2337/diacare.27.11.262815504997)
      Tai J, Liu W, Li Y, Li L, Holscher C (2018) Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease. Brain Res 1678:64–74. https://doi.org/10.1016/j.brainres.2017.10.012. (PMID: 10.1016/j.brainres.2017.10.01229050859)
      Harrell CS, Zainaldin C, McFarlane D et al (2018) High-fructose diet during adolescent development increases neuroinflammation and depressive-like behavior without exacerbating outcomes after stroke. Brain Behav Immun 73:340–351. https://doi.org/10.1016/j.bbi.2018.05.018. (PMID: 10.1016/j.bbi.2018.05.018297878579280910)
      Cipollini V, Troili F, Giubilei F (2019) Emerging Biomarkers in Vascular Cognitive Impairment and Dementia: From Pathophysiological Pathways to Clinical Application. Int J Mol Sci 20(11):2812. https://doi.org/10.3390/ijms20112812. (PMID: 10.3390/ijms201128126600494)
      Rosenberg GA (2017) Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci (Lond) 131(6):425–437. https://doi.org/10.1042/CS20160604. (PMID: 10.1042/CS20160604)
      Geranmayeh MH, Rahbarghazi R, Farhoudi M (2019) Targeting pericytes for neurovascular regeneration. Cell Commun Signal 17(1):26. https://doi.org/10.1186/s12964-019-0340-8. (PMID: 10.1186/s12964-019-0340-8308941906425710)
      Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer's disease: A matter of blood-brain barrier dysfunction? J Exp Med 214(11):3151–3169. https://doi.org/10.1084/jem.20171406. (PMID: 10.1084/jem.20171406290616935679168)
      Ruze R, Xu Q, Liu G et al (2021) Central GLP-1 contributes to improved cognitive function and brain glucose uptake after duodenum-jejunum bypass on obese and diabetic rats. Am J Physiol Endocrinol Metab 321(3):E392–E409. https://doi.org/10.1152/ajpendo.00126.2021. (PMID: 10.1152/ajpendo.00126.202134370593)
      Xie Z, Enkhjargal B, Nathanael M et al (2021) Exendin-4 Preserves Blood-Brain Barrier Integrity via Glucagon-Like Peptide 1 Receptor/Activated Protein Kinase-Dependent Nuclear factor-Kappa B/Matrix Metalloproteinase-9 Inhibition After Subarachnoid Hemorrhage in Rat. Front Mol Neurosci 14:750726. https://doi.org/10.3389/fnmol.2021.750726. (PMID: 10.3389/fnmol.2021.750726350026158733623)
      Zheng J, Xie Y, Ren L et al (2021) GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer's disease. Mol Metab 47:101180. https://doi.org/10.1016/j.molmet.2021.101180. (PMID: 10.1016/j.molmet.2021.101180335566427905479)
      Reiner DJ, Mietlicki-Baase EG, McGrath LE et al (2016) Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance. J Neurosci 36(12):3531–3540. https://doi.org/10.1523/JNEUROSCI.3579-15.2016. (PMID: 10.1523/JNEUROSCI.3579-15.2016270136814804010)
      Kawatani M, Yamada Y, Kawatani M (2018) Glucagon-like peptide-1 (GLP-1) action in the mouse area postrema neurons. Peptides 107:68–74. https://doi.org/10.1016/j.peptides.2018.07.010. (PMID: 10.1016/j.peptides.2018.07.01030081042)
      Shi X, Chacko S, Li F et al (2017) Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity. Mol Metab 6(11):1350–1359. https://doi.org/10.1016/j.molmet.2017.08.009. (PMID: 10.1016/j.molmet.2017.08.009291072835681239)
      Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK (2011) Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 121(6):2413–2421. https://doi.org/10.1172/JCI43703. (PMID: 10.1172/JCI43703216065953104740)
      Lin WJ, Ma XF, Hao M et al (2018) Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products. Peptides 105:7–13. https://doi.org/10.1016/j.peptides.2018.05.003. (PMID: 10.1016/j.peptides.2018.05.00329746877)
      Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27(4):277–284. (PMID: 155407986668865)
      Zhao X, Wang M, Wen Z et al (2021) GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 12:721135. https://doi.org/10.3389/fendo.2021.721135. (PMID: 10.3389/fendo.2021.721135)
      Zhang Y, Sun B, Feng D et al (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657):248–253. https://doi.org/10.1038/nature22394. (PMID: 10.1038/nature22394285387295587415)
    • Contributed Indexing:
      Keywords: Cognitive function; Diabetes; GLP-1 receptor; Nitration; Pericytes; Vascular cognitive impairment and dementia
    • الرقم المعرف:
      0 (Glp1r protein, mouse)
      0 (Glucagon-Like Peptide-1 Receptor)
      89750-14-1 (Glucagon-Like Peptide 1)
      9P1872D4OL (Exenatide)
    • الموضوع:
      Date Created: 20220610 Date Completed: 20220804 Latest Revision: 20230804
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s00125-022-05730-5
    • الرقم المعرف:
      35687178