Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

How do plants remember drought?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer-Verlag [etc.]
    • الموضوع:
    • نبذة مختصرة :
      Main Conclusion: Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681. https://doi.org/10.1105/tpc.106.048041. (PMID: 10.1105/tpc.106.048041175135011913739)
      Aleman F, Yazaki J, Lee M et al (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci Rep 6:28941. https://doi.org/10.1038/srep28941. (PMID: 10.1038/srep28941273577494928087)
      Alves RDFB, Menezes-Silva PE, Sousa LF et al (2020) (2020) Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Sci Rep 101(10):1–16. https://doi.org/10.1038/s41598-020-73423-3. (PMID: 10.1038/s41598-020-73423-3)
      Ariel F, Lucero L, Christ A et al (2020) R-loop mediated trans action of the APOLO long non-coding RNA. Mol Cell 77:1055–1065. https://doi.org/10.1016/j.molcel.2019.12.015. (PMID: 10.1016/j.molcel.2019.12.01531952990)
      Auler PA, Souza GM, da Silva Engela MRG et al (2021) Stress memory of physiological, biochemical and metabolomic responses in two different rice genotypes under drought stress: the scale matters. Plant Sci 311:110994. https://doi.org/10.1016/J.PLANTSCI.2021.110994. (PMID: 10.1016/J.PLANTSCI.2021.11099434482907)
      Avramova Z (2018) Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant Cell Environ 42:983–997. https://doi.org/10.1111/pce.13458. (PMID: 10.1111/pce.1345830299553)
      Borg M, Jacob Y, Susaki D et al (2020) Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 22:621–629. https://doi.org/10.1038/s41556-020-0515-y. (PMID: 10.1038/s41556-020-0515-y323938847116658)
      Boyko A, Blevins T, Yao Y et al (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE 5(3):e9514. https://doi.org/10.1371/journal.pone.0009514. (PMID: 10.1371/journal.pone.0009514202090862831073)
      Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14(5):580–587. https://doi.org/10.1016/j.pbi.2011.07.011. (PMID: 10.1016/j.pbi.2011.07.01121862389)
      Buzas DM, Tamada Y, Kurata T (2012) FLC: a hidden Polycomb response element shows up in silence. Plant Cell Physiol 53:785–793. https://doi.org/10.1093/pcp/pcr163. (PMID: 10.1093/pcp/pcr16322107881)
      Calarco JP, Borges F, Donoghue MT et al (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151(1):194–205. https://doi.org/10.1016/j.cell.2012.09.001. (PMID: 10.1016/j.cell.2012.09.001230002703697483)
      Canarini A, Schmidt H, Fuchslueger L et al (2021) Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat Commun 12(1):1–14. https://doi.org/10.1038/s41467-021-25675-4. (PMID: 10.1038/s41467-021-25675-4)
      Chen Y, Li C, Yi J et al (2020) Transcriptome response to drought, rehydration and re-dehydration in potato. Int J Mol Sci 21:159. https://doi.org/10.3390/ijms21010159. (PMID: 10.3390/ijms21010159)
      Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139. https://doi.org/10.1016/j.pbi.2008.12.006. (PMID: 10.1016/j.pbi.2008.12.006191791043139470)
      Choi Y, Gehring M, Johnson L et al (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110(1):33–42. https://doi.org/10.1016/s0092-8674(02)00807-3. (PMID: 10.1016/s0092-8674(02)00807-312150995)
      Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411–415. https://doi.org/10.1038/nature13069. (PMID: 10.1038/nature13069246706634074602)
      de Guedes FAF, Nobres P, Rodrigues Ferreira DC et al (2018) Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environ Exp Bot 147:220–233. https://doi.org/10.1016/j.envexpbot.2017.12.004. (PMID: 10.1016/j.envexpbot.2017.12.004)
      de Urquiaga MCO, Thiebaut F, Hemerly AS, Ferreira PCG (2021) From trash to luxury: the potential role of plant lncRNA in DNA methylation during abiotic stress. Front Plant Sci 11:2130. https://doi.org/10.3389/fpls.2020.603246. (PMID: 10.3389/fpls.2020.603246)
      Denkena J, Johannes F, Colomé-Tatché M (2021) Region-level epimutation rates in Arabidopsis thaliana. Heredity (edinb) 127:190–202. https://doi.org/10.1038/s41437-021-00441-w. (PMID: 10.1038/s41437-021-00441-w)
      Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66:735–744. https://doi.org/10.1111/j.1365-313X.2011.04534.x. (PMID: 10.1111/j.1365-313X.2011.04534.x21309869)
      Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Comm 3:740. https://doi.org/10.1038/ncomms1732. (PMID: 10.1038/ncomms1732)
      Ding Y, Liu N, Virlouvet L et al (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229. https://doi.org/10.1186/1471-2229-13-229. (PMID: 10.1186/1471-2229-13-229243774443879431)
      Ding Y, Virlouvet L, Liu N, Riethoven JJ, Fromm M, Avramova Z (2014) Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol 14:141. https://doi.org/10.1186/1471-2229-14-141. (PMID: 10.1186/1471-2229-14-141248857874081654)
      Fang O, Zhang QB, Vitasse Y, Zweifel R, Cherubini P (2021) The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. For Ecol Manag 486:118968. https://doi.org/10.1016/j.foreco.2021.118968. (PMID: 10.1016/j.foreco.2021.118968)
      Fleta-Soriano E, Munné-Bosch S (2016) Stress memory and the inevitable effects of drought: a physiological perspective. Front Plant Sci 7:143. https://doi.org/10.3389/FPLS.2016.00143/BIBTEX. (PMID: 10.3389/FPLS.2016.00143/BIBTEX269130464753297)
      Fleta-Soriano E, Pinto-Marijuan M, Munne-Bosch S (2015) Evidence of drought stress memory in the facultative CAM, Aptenia cordifolia: possible role of phytohormones. PLoS ONE 10:e0135391. https://doi.org/10.1371/journal.pone.0135391. (PMID: 10.1371/journal.pone.0135391262743254537193)
      Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Nat Acad Sci USA 106(20):8380–8385. https://doi.org/10.1073/pnas.0903144106. (PMID: 10.1073/pnas.0903144106194202182688869)
      Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Nat Acad Sci USA 108(4):1717–1722. https://doi.org/10.1073/pnas.1018367108. (PMID: 10.1073/pnas.1018367108212203133029766)
      Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147(1):15–27. https://doi.org/10.1111/j.1399-3054.2012.01635.x. (PMID: 10.1111/j.1399-3054.2012.01635.x22519646)
      Galiano L, Timofeeva G, Saurer M et al (2017) The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. Plant Cell Environ. https://doi.org/10.1111/pce.12972. (PMID: 10.1111/pce.1297228432768)
      Galviz YCF, Ribeiro RV, Souza GM (2020) Yes, plants do have memory. Theor Exp Plant Physiol 32:195–202. https://doi.org/10.1007/s40626-020-00181-y. (PMID: 10.1007/s40626-020-00181-y)
      Ganguly D, Crisp PA, Eichten SR, Pogson BJ (2017) The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol 175(4):1893–1912. https://doi.org/10.1104/pp.17.00744. (PMID: 10.1104/pp.17.00744289864225717726)
      Gayacharan JAJ (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19(3):379–387. https://doi.org/10.1007/s12298-013-0176-4. (PMID: 10.1007/s12298-013-0176-4244315063715639)
      Gelaw TA, Sanan-Mishra N (2021) Non-coding RNAs in response to drought stress. Int J Mol Sci. https://doi.org/10.3390/ijms222212519. (PMID: 10.3390/ijms222212519348303998621352)
      Godwin J, Farrona S (2020) Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. Methods in molecular biology. Humana, New York, pp 243–259.
      Hallouin M, Ghelis T, Brault M et al (2002) Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiol 130:265–272. https://doi.org/10.1104/pp.004168. (PMID: 10.1104/pp.00416812226506166559)
      Han SK, Sang Y, Rodrigues A et al (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24(12):4892–4906. https://doi.org/10.1105/tpc.112.105114. (PMID: 10.1105/tpc.112.105114232091143556964)
      Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Ann Rev Physiol 73:115–134. https://doi.org/10.1146/annurev-physiol-012110-142203. (PMID: 10.1146/annurev-physiol-012110-142203)
      He Y, Li Z (2018) Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet 34:856–866. https://doi.org/10.1016/j.tig.2018.07.006. (PMID: 10.1016/j.tig.2018.07.00630144941)
      He L, Wu W, Zinta G et al (2018) A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nature Commun 9(1):1–11. https://doi.org/10.1038/s41467-018-02839-3. (PMID: 10.1038/s41467-018-02839-3)
      Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic non-coding RNA. Science 331:76–79. https://doi.org/10.1126/science.1197349. (PMID: 10.1126/science.119734921127216)
      Herman JJ (1838) Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc b Biol Sci 283:20160988. https://doi.org/10.1098/rspb.2016.0988. (PMID: 10.1098/rspb.2016.0988)
      Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x. (PMID: 10.1111/j.1365-313X.2010.04124.x20409277)
      Huettel B, Kanno T, Daxinger L et al (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta 1769:358–374. https://doi.org/10.1016/j.bbaexp.2007.03.001. (PMID: 10.1016/j.bbaexp.2007.03.00117449119)
      Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:1–22. https://doi.org/10.1186/1471-2164-9-118/FIGURES/5. (PMID: 10.1186/1471-2164-9-118/FIGURES/5)
      Iwasaki M, Paszkowski J (2014) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Nat Acad Sci USA 111(23):8547–8552. https://doi.org/10.1073/pnas.1402275111. (PMID: 10.1073/pnas.1402275111249121484060648)
      Jacques C, Salon C, Barnard RL, Vernoud V, Prudent M (2021) Drought stress memory at the plant cycle level: a review. Plants 10(9):1873. https://doi.org/10.3390/plants10091873. (PMID: 10.3390/plants10091873345794068466371)
      Karle SB, Nair B, Kumar K (2020) SnRK2s: part and parcel of ABA signaling in plants. Protein kinases and stress signaling in plants: functional genomic perspective, pp. 133–46 https://doi.org/10.1002/9781119541578.ch6.
      Kawakatsu T, Huang SSC, Jupe F et al (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166(2):492–505. https://doi.org/10.1016/j.cell.2016.06.044. (PMID: 10.1016/j.cell.2016.06.044274198735172462)
      Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703. https://doi.org/10.1093/mp/sss128. (PMID: 10.1093/mp/sss12823142764)
      Kim ED, Sung S (2012) Long non-coding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17(1):16–21. https://doi.org/10.1016/j.tplants.2011.10.008. (PMID: 10.1016/j.tplants.2011.10.00822104407)
      Kim J-M, To TK, Ishida J et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588. https://doi.org/10.1093/pcp/pcn133. (PMID: 10.1093/pcp/pcn13318779215)
      Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ (2020) Recurrent drought conditions enhance the induction of drought stress memory genes in Glycine max L. Front Genet. https://doi.org/10.3389/fgene.2020.576086. (PMID: 10.3389/fgene.2020.576086335847937689278)
      Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863. https://doi.org/10.1093/pcp/pcu125. (PMID: 10.1093/pcp/pcu12525298421)
      Kobayashi Y, Sadhukhan A, Tazib T et al (2016) Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell Environ 39:918–934. https://doi.org/10.1111/pce.12691. (PMID: 10.1111/pce.1269126667381)
      Kou S, Gu Q, Duan L et al (2021) Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10483-3. (PMID: 10.1007/s00344-021-10483-3)
      Kron AP, Souza GM, Ribeiro RV (2008) Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67:43–49. https://doi.org/10.1590/S0006-87052008000100005. (PMID: 10.1590/S0006-87052008000100005)
      Labra M, Ghiani A, Citterio S et al (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4(6):694–699. https://doi.org/10.1055/s-2002-37398. (PMID: 10.1055/s-2002-37398)
      Lahuta LB, Szablińska-Piernik J, Horbowicz M (2022) Changes in metabolic profiles of pea (Pisum sativum L.) as a result of repeated short-term soil drought and subsequent re-watering. Int J Mol Sci 23:1704. https://doi.org/10.3390/IJMS23031704. (PMID: 10.3390/IJMS23031704351636268836265)
      Leng G, Hall J (2019) Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654:811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434. (PMID: 10.1016/j.scitotenv.2018.10.434304486716341212)
      Leufen G, Noga G, Hunsche M (2016) Drought stress memory in sugar beet: mismatch between biochemical and physiological parameters. J Plant Growth Regul 353(35):680–689. https://doi.org/10.1007/S00344-016-9571-8. (PMID: 10.1007/S00344-016-9571-8)
      Levine M (2011) Paused RNA polymerase II as a developmental checkpoint. Cell 145:502–511. https://doi.org/10.1016/j.cell.2011.04.021. (PMID: 10.1016/j.cell.2011.04.021215656104257488)
      Li X, Liu F (2016) Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In: Drought stress tolerance in plants, vol 1. Springer, Cham, pp 17–44. https://doi.org/10.1007/978-3-319-28899-4_2.
      Li WX, Oono Y, Zhu J et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251. https://doi.org/10.1105/tpc.108.059444. (PMID: 10.1105/tpc.108.059444186825472553615)
      Li P, Yang H, Wang L et al (2019) Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet 10:55. https://doi.org/10.3389/fgene.2019.00055. (PMID: 10.3389/fgene.2019.00055308001426375884)
      Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843. https://doi.org/10.1261/rna.895308. (PMID: 10.1261/rna.895308183565392327369)
      Liu N, Fromm M, Avramova Z (2014) H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana. Mol Plant 7:502–513. https://doi.org/10.1093/mp/ssu001. (PMID: 10.1093/mp/ssu00124482435)
      Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. In: Genomics, proteomics and bioinformatics, vol 13, issue 3. Elsevier, Oxford, pp 137–147. https://doi.org/10.1016/j.gpb.2015.02.003.
      Liu N, Staswick PE, Avramova Z (2016) Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress. Plant Cell Environ 39:2515–2529. https://doi.org/10.1111/pce.12806. (PMID: 10.1111/pce.1280627451106)
      Liu X, Challabathula D, Quan W et al (2019) Transcriptional and metabolic changes in the desiccation tolerant plant Craterostigma plantagineum during recurrent exposures to dehydration. Planta 249:1017–1035. https://doi.org/10.1007/s00425-018-3058-8. (PMID: 10.1007/s00425-018-3058-830498957)
      Lopes-Caitar VS, Silva SMH, Marcelino-Guimaraes FC (2016) Plant small heat shock proteins and its interactions with biotic stress. In: Asea A, Kaur P, Calderwood S (eds) Heat shock proteins and plants. Heat shock proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_2.
      Lopez BC, Gracia CA, Sabate S, Keenan T (2009) Assessing the resilience of Mediterranean holm oaks to disturbances using selective thinning. Acta Oecol (montrouge) 35:849–854. https://doi.org/10.1016/j.actao.2009.09.001. (PMID: 10.1016/j.actao.2009.09.001)
      Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853. https://doi.org/10.1104/pp.111.187468. (PMID: 10.1104/pp.111.18746822147520)
      Luo L, Zheng Y, Gao Z et al (2020) Grafting improves drought stress memory by increasing the P5CS1 gene expression in Brassica rapa. Plant Soil 452:61–72. https://doi.org/10.1007/s11104-020-04547-8. (PMID: 10.1007/s11104-020-04547-8)
      Magwanga RO, Lu P, Kirungu JN et al (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet. https://doi.org/10.1186/S12863-017-0596-1. (PMID: 10.1186/S12863-017-0596-1293348905769447)
      Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107(1):141–148. https://doi.org/10.1104/pp.107.1.141. (PMID: 10.1104/pp.107.1.14112228349161176)
      Martorell S, Medrano H, Tomàs M et al (2015) Plasticity of vulnerability to leaf hydraulic dysfunction during acclimation to drought in grapevines: a+n osmotic-mediated process. Physiol Plant 153:381–391. https://doi.org/10.1111/PPL.12253. (PMID: 10.1111/PPL.1225325132228)
      Meena M, Divyanshu K, Kumar S et al (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02952. https://doi.org/10.1016/J.HELIYON.2019.E02952. (PMID: 10.1016/J.HELIYON.2019.E02952318721236909094)
      Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance–different tiers of regulation. J Plant Physiol 171(7):486–496. https://doi.org/10.1016/j.jplph.2013.12.007. (PMID: 10.1016/j.jplph.2013.12.00724655384)
      Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30(17):3553–3563. https://doi.org/10.1038/emboj.2011.274. (PMID: 10.1038/emboj.2011.274218789963181474)
      Minow MA, Colasanti J (2020) Does variable epigenetic inheritance fuel plant evolution? Genome 63(5):253–262. https://doi.org/10.1139/gen-2019-0190. (PMID: 10.1139/gen-2019-019032053387)
      Miura K, Okamoto H, Okuma E et al (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104. https://doi.org/10.1111/tpj.12014. (PMID: 10.1111/tpj.1201422963672)
      Mozgova I, Mikulski P, Pecinka A, Farrona S (2019) Epigenetic mechanisms of abiotic stress response and memory in plants. Epigenetics in plants of agronomic importance: fundamentals and applications: transcriptional regulation and chromatin remodelling in plants, 2nd edn, pp 1–64. https://doi.org/10.1007/978-3-030-14760-0_1.
      Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234(1):97–107. https://doi.org/10.1007/s00425-011-1387-y. (PMID: 10.1007/s00425-011-1387-y21374086)
      Neves DM, Almeida LAdH, Santana-Vieira DDS et al (2017) Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci Rep 7:13684. https://doi.org/10.1038/s41598-017-14161-x. (PMID: 10.1038/s41598-017-14161-x290579305651809)
      Oh JE, Kwon Y, Kim JH, Noh H, Hong SW, Lee H (2011) A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol 77(1):91–103. https://doi.org/10.1007/s11103-011-9796-7. (PMID: 10.1007/s11103-011-9796-721637967)
      Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086. (PMID: 10.3389/fpls.2014.00086246599933952189)
      Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M, Lovisolo C, Valle G, Schubert A (2017) The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiol 173(4):2180–2195. https://doi.org/10.1104/pp.16.01119. (PMID: 10.1104/pp.16.01119282358895373040)
      Paixão JFR, Gillet FX, Ribeiro TP et al (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone Acetyl Transferase. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-44571-y. (PMID: 10.1038/s41598-019-44571-y)
      Papaefthimiou D, Tsaftaris AS (2012) Significant induction by drought of HvPKDM7–1, a gene encoding a jumonji-like histone demethylase homologue in barley (H. vulgare). Acta Physiol Plant 34(3):1187–1198. https://doi.org/10.1007/s11738-011-0915-5. (PMID: 10.1007/s11738-011-0915-5)
      Park K, Lee S, Yoo H et al (2020) DEMETER-mediated DNA demethylation in gamete companion cells and the endosperm, and its possible role in embryo development in arabidopsis. J Plant Biol 63:321–329. https://doi.org/10.1007/s12374-020-09258-2. (PMID: 10.1007/s12374-020-09258-2)
      Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53(5):801–808. https://doi.org/10.1093/pcp/pcs044. (PMID: 10.1093/pcp/pcs044224573983345370)
      Pikaard CS (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71:473–480. https://doi.org/10.1101/sqb.2006.71.046. (PMID: 10.1101/sqb.2006.71.04617381329)
      Raj S, Bräutigam K, Hamanishi ET et al (2011) Clone history shapes Populus drought responses. Proc Nat Acad Sci USA 108(30):12521–12526. https://doi.org/10.1073/pnas.1103341108. (PMID: 10.1073/pnas.1103341108217469193145742)
      Rajkumar MS, Shankar R, Garg R, Jain M (2020) Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 112(5):3537–3548. https://doi.org/10.1016/j.ygeno.2020.04.005. (PMID: 10.1016/j.ygeno.2020.04.00532278023)
      Raju SKK, Shao MR, Sanchez R, Xu YZ, Sandhu A, Graef G, Mackenzie S (2018) An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J 16(11):1836–1847. https://doi.org/10.1111/pbi.12919. (PMID: 10.1111/pbi.12919295709256181216)
      Ribeiro RV, Torres RDS (2018) Sentinel plants as programmable processing units: insights from a multidisciplinary perspective about stress memory and plant signaling and their relevance at community level. Plant Signal Behav 13(10):e1526001. https://doi.org/10.1080/15592324.2018.1526001. (PMID: 10.1080/15592324.2018.1526001302602726204832)
      Rusconi F, Simeoni F, Francia P et al (2013) The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. J Exp Bot 64(11):3361–3371. https://doi.org/10.1093/jxb/ert180. (PMID: 10.1093/jxb/ert180238285453733157)
      Rutowicz K, Puzio M, Halibart-Puzio J et al (2015) A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol 169:2080–2101. https://doi.org/10.1104/pp.15.00493. (PMID: 10.1104/pp.15.00493263513074634048)
      Sadhukhan A, Kobayashi Y, Nakano Y, Iuchi S, Kobayashi M, Sahoo L, Koyama H (2017) Genome-wide association study reveals that the aquaporin NIP1;1 contributes to variation in hydrogen peroxide sensitivity in Arabidopsis thaliana. Mol Plant 10:1082–1094. (PMID: 10.1016/j.molp.2017.07.003)
      Sadhukhan A, Agrahari RK, Wu L, Watanabe T, Nakano Y, Panda SK, Koyama H, Kobayashi Y (2021) Expression genome-wide association study identifies that phosphatidylinositol-derived signaling regulates ALUMINIUM SENSITIVE3 expression under aluminium stress in the shoots of Arabidopsis thaliana. Plant Sci 302:110711. (PMID: 10.1016/j.plantsci.2020.110711)
      Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11(9):440–448. https://doi.org/10.1016/j.tplants.2006.07.004. (PMID: 10.1016/j.tplants.2006.07.00416899391)
      Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775. https://doi.org/10.1093/TREEPHYS/TPR143. (PMID: 10.1093/TREEPHYS/TPR14322302370)
      Salinger MJ (2005) Climate variability and change: past, present and future—an overview. Increasing climate variability and change. Clim Change 70:9–29. https://doi.org/10.1007/s10584-005-5936-x. (PMID: 10.1007/s10584-005-5936-x)
      Santos AP, Serra T, Figueiredo DD, Barros P, Lourenço T, Chander S, Oliveira MM, Saibo NJM (2011) Transcription regulation of abiotic stress responses in rice: a combined action of transcription Factors and Epigenetic Mechanisms. OMICS J Integr Biol 15:839–857. https://doi.org/10.1089/omi.2011.0095. (PMID: 10.1089/omi.2011.0095)
      Sasaki-Sekimoto Y, Taki N, Obayashi T et al (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668. https://doi.org/10.1111/j.1365-313X.2005.02560.x. (PMID: 10.1111/j.1365-313X.2005.02560.x16262714)
      Scippa GS, Di Michele M, Onelli E et al (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55:99–109. https://doi.org/10.1093/jxb/erh022. (PMID: 10.1093/jxb/erh02214645393)
      Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S (2019) A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 42:1054–1064. https://doi.org/10.1111/pce.13426. (PMID: 10.1111/pce.1342630136402)
      Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983. https://doi.org/10.1093/jxb/eru256. (PMID: 10.1093/jxb/eru256249486794144774)
      Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S (2020) Genomic and transcriptomic analysis identified novel putative cassava lncRNAs involved in cold and drought stress. Genes (basel) 11:366. https://doi.org/10.3390/genes11040366. (PMID: 10.3390/genes110403667230406)
      Sun C, Ali K, Yan K et al (2021) Exploration of epigenetics for improvement of drought and other stress resistance in crops: a review. Plants 10:1226. https://doi.org/10.3390/plants10061226. (PMID: 10.3390/plants10061226342086428235456)
      Sunkar R, Zhu JK (2004) Novel and stress-regulated MicroRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019. https://doi.org/10.1105/tpc.104.022830. (PMID: 10.1105/tpc.104.02283015258262519194)
      Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/J.TPLANTS.2009.11.009. (PMID: 10.1016/J.TPLANTS.2009.11.00920036181)
      Thuy Quynh Nguyen T, Thanh Huyen Trinh L, Bao Vy Pham H et al (2020) Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS Bioeng 7:114–123. https://doi.org/10.3934/bioeng.2020011. (PMID: 10.3934/bioeng.2020011)
      Todaka D, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K (2019) ABA-responsive gene expression in response to drought stress: cellular regulation and long-distance signaling. In Advances in botanical research. Elsevier, pp. 83–113. https://doi.org/10.1016/bs.abr.2019.05.001.
      Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637. https://doi.org/10.1073/pnas.190309197. (PMID: 10.1073/pnas.1903091971100583117252)
      Van DK, Ding Y, Malkaram S et al (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238. https://doi.org/10.1186/1471-2229-10-238. (PMID: 10.1186/1471-2229-10-238)
      Virlouvet L, Avenson TJ, Du Q, Zhang C, Liu N, Fromm M, Avramova Z, Russo SE (2018) Dehydration stress memory: Gene networks linked to physiological responses during repeated stresses of zea mays. Front Plant Sci 9:1058. https://doi.org/10.3389/fpls.2018.01058. (PMID: 10.3389/fpls.2018.01058300876866066539)
      Virlouvet L, Fromm M (2015) Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol 205(2):596–607. https://doi.org/10.1111/nph.13080. (PMID: 10.1111/nph.1308025345749)
      Virlouvet L, Ding Y, Fujii H, Avramova Z, Fromm M (2014) ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana. Plant J 79:150–161. https://doi.org/10.1111/tpj.12548. (PMID: 10.1111/tpj.1254824805058)
      Walter J, Nagy L, Hein R et al (2011) Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot 71:34–40. https://doi.org/10.1016/j.envexpbot.2010.10.020. (PMID: 10.1016/j.envexpbot.2010.10.020)
      Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8. https://doi.org/10.1016/j.envexpbot.2012.02.009. (PMID: 10.1016/j.envexpbot.2012.02.009)
      Wang X-L, Wang J-J, Sun R-H et al (2016) Correlation of the corn compensatory growth mechanism after post-drought rewatering with cytokinin induced by root nitrate absorption. Agric Water Manag 166:77–85. https://doi.org/10.1016/j.agwat.2015.12.007. (PMID: 10.1016/j.agwat.2015.12.007)
      Wang X, Li Q, Xie J et al (2021) Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. Crop J 9:120–132. https://doi.org/10.1016/j.cj.2020.06.002. (PMID: 10.1016/j.cj.2020.06.002)
      Ward D (2016) The biology of deserts. Oxford Univ Press. https://doi.org/10.1093/acprof:oso/9780199211470.001.0001. (PMID: 10.1093/acprof:oso/9780199211470.001.0001)
      Wojtyla Ł, Paluch-Lubawa E, Sobieszczuk-Nowicka E, Garnczarska M (2020) Drought stress memory and subsequent drought stress tolerance in plants. Prim Mediat Stress Cross-Stress Tolerance Crop Plants. https://doi.org/10.1016/B978-0-12-817892-8.00007-6. (PMID: 10.1016/B978-0-12-817892-8.00007-6)
      Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930. https://doi.org/10.1111/J.1365-3040.2011.02388.X. (PMID: 10.1111/J.1365-3040.2011.02388.X21722142)
      Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830. https://doi.org/10.1242/JEB.01730. (PMID: 10.1242/JEB.0173016043587)
      Yokthongwattana C, Bucher E, Caikovski M et al (2010) MOM1 and Pol-IV/V interactions regulate the intensity and specificity of transcriptional gene silencing. EMBO J 29(2):340–351. https://doi.org/10.1038/emboj.2009.328. (PMID: 10.1038/emboj.2009.32819910926)
      Yong-Villalobos L, González-Morales SI, Wrobel K et al (2015) Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc Natl Acad Sci USA 112:E7293–E7302. https://doi.org/10.1073/pnas.1522301112. (PMID: 10.1073/pnas.1522301112266683754702951)
      Yoshida T, Fujita Y, Sayama H et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685. https://doi.org/10.1111/j.1365-313X.2009.04092.x. (PMID: 10.1111/j.1365-313X.2009.04092.x19947981)
      Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62. https://doi.org/10.1186/gb-2009-10-6-r62. (PMID: 10.1186/gb-2009-10-6-r62195087352718496)
      Zhang C, Wang N, Zhang Y, Feng Q, Yang C, Liu B (2013) DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genet Mol Res 12(2):1269–1277. https://doi.org/10.4238/2013.April.17.5. (PMID: 10.4238/2013.April.17.523661451)
      Zhang C, Tang G, Peng X, Sun F, Liu S, Xi Y (2018a) Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biol 18(1):1–15. https://doi.org/10.1186/s12870-018-1288-3. (PMID: 10.1186/s12870-018-1288-3)
      Zhang H, Lang Z, Zhu JK (2018b) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19(8):489–506. https://doi.org/10.1038/s41580-018-0016-z. (PMID: 10.1038/s41580-018-0016-z29784956)
      Zhang Y, Wendte JM, Ji L, Schmitz RJ (2020) Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc Nat Acad Sci 117(9):4874–4884. https://doi.org/10.1073/pnas.1918172117. (PMID: 10.1073/pnas.1918172117320712087060739)
      Zhou Y, Zhang J, Lin H, Guo G, Guo Y (2010) MORPHEUS’ MOLECULE1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis. Plant Physiol 154(3):1272–1280. https://doi.org/10.1104/pp.110.162131. (PMID: 10.1104/pp.110.162131208267012971605)
      Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329. (PMID: 10.1146/annurev.arplant.53.091401.143329)
      Zhu F, Ahchige MW, Brotman Y, Alseekh S, Zsögön A, Fernie AR (2022) Bringing more players into play: Leveraging stress in genome wide association studies. J Plant Physiol 271:153657. https://doi.org/10.1016/j.jplph.2022.153657. (PMID: 10.1016/j.jplph.2022.15365735231821)
    • Contributed Indexing:
      Keywords: ABA; DNA methylation; Drought memory; Epigenetics; Histone modifications
    • الرقم المعرف:
      059QF0KO0R (Water)
      72S9A8J5GW (Abscisic Acid)
    • الموضوع:
      Date Created: 20220610 Date Completed: 20220614 Latest Revision: 20220614
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1007/s00425-022-03924-0
    • الرقم المعرف:
      35687165