Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spent coffee grounds: A sustainable approach toward novel perspectives of valorization.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley Country of Publication: United States NLM ID: 7706045 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-4514 (Electronic) Linking ISSN: 01458884 NLM ISO Abbreviation: J Food Biochem Subsets: MEDLINE
    • بيانات النشر:
      Publication: 2008- : Hoboken, NJ : Wiley
      Original Publication: Westport, Conn. : Food & Nutrition Press
    • الموضوع:
    • نبذة مختصرة :
      Coffee is one of the most popular and preferred drinks in the world, being consumed for its refreshing and energizing properties. As a result, the consumption of coffee generates millions of tons of waste, in particular, spent coffee grounds (SCG). On the contrary, food waste recovery is an incredibly sustainable and convenient solution to the growing need for materials, fuels, and chemicals. SCG has been developed as a precious resource of several high value-added products (oil, proteins, minerals, fatty acids, sterols….). Thus, a transformative pathway to a circular economy that involves the valorization of coffee wastes and by-products is currently attracting the attention of researchers worldwide. The potential growth of scientific papers and publications promotes a comprehensive review to determine the research hotspots, knowledge structure, and to consider future avenues and challenges. Therefore, in this paper, we conducted a systematic review based on 275 indexed papers on the composition and valorization of SCG as a prospective environmental source. PRACTICAL APPLICATIONS: SCG can be applied in agro-food industries.
      (© 2022 Wiley Periodicals LLC.)
    • References:
      Abbasi-Parizad, P., De Nisi, P., Scaglia, B., Scarafoni, A., Pilu, S., & Adani, F. (2021). Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradical activities and immunomodulatory properties. Food and Bioproducts Processing, 127, 338-348. https://doi.org/10.1016/j.fbp.2021.03.015.
      Acevedo, F., Rubilar, M., Scheuermann, E., Cancino, B., Uquiche, E., Garcés, M., Inostroza, K., & Shene, C. (2013). Spent coffee grounds as a renewable source of bioactive compounds. Journal of Biobased Materials and Bioenergy, 7(3), 420-428. https://doi.org/10.1166/jbmb.2013.1369.
      Afriliana, A., Hidayat, E., Yoshiharu, M., Taizo, M. & Harada, H. (2020). Evaluation of Potency Spent Coffee Grounds for Make Black Compost. 142, 04002. https://doi.org/10.1051/e3sconf/202014204002.
      Ahangari, B., & Sargolzaei, J. (2013). Extraction of lipids from spent coffee grounds using organic solvents and supercritical carbon dioxide. Journal of Food Processing and Preservation, 37(5), 1014-1021. https://doi.org/10.1111/j.1745-4549.2012.00757.x.
      Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., & Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70-76. https://doi.org/10.1016/j.fuel.2012.01.023.
      Arulrajah, A., Kua, T.-A., Horpibulsuk, S., Mirzababaei, M., & Chinkulkijniwat, A. (2017). Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Construction and Building Materials, 151, 18-27. https://doi.org/10.1016/j.conbuildmat.2017.06.050.
      Arya, M., & Rao, L. J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47(1), 51-67. https://doi.org/10.1080/10408390600550315.
      Awad, A. B., & Fink, C. S. (2019). Phytosterols as anticancer dietary components: Evidence and mechanism of action. The Journal of Nutrition, 130(9), 2127-2130. https://doi.org/10.1093/jn/130.9.2127.
      Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540-27557. https://doi.org/10.1039/C5RA01911G.
      Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. https://doi.org/10.1007/s11947-014-1349-z.
      Barbosa, H., Melo, M., Coimbra, M., Passos, C., & Silva, C. (2014). Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. The Journal of Supercritical Fluids, 85, 165-172. https://doi.org/10.1016/j.supflu.2013.11.011.
      Belitz, H. D., Grosch, W., & Schieberle, P. (Eds.). (2009). Coffee, tea, cocoa. In Food Chemistry (pp. 938-970). Springer. https://doi.org/10.1007/978-3-540-69934-7_22.
      Bijla, L., Aissa, R., Bouzid, H. A., Sakar, E. H., Ibourki, M., & Gharby, S. (2022). Spent coffee ground oil as a potential alternative for vegetable oil production: Evidence from oil content, lipid profiling, and physicochemical characterization. Biointerface Research in Applied Chemistry., 12(5), 6308-6320. https://doi.org/10.33263/BRIAC125.63086320.
      Bouhlal, F., Aqil, Y., Chamkhi, I., Belmaghraoui, W., Labjar, N., Hajjaji, S. E., Benabdellah, G. A., Aurag, J., Lotfi, E. M., & Mahi, M. E. (2020). GC-MS analysis, phenolic compounds quantification, antioxidant, and antibacterial activities of the hydro-alcoholic extract of spent coffee grounds. Journal of Biologically Active Products from Nature, 10(4), 325-337. https://doi.org/10.1080/22311866.2020.1802333.
      Caetano, N. S., Silva, V. F. M., Melo, A. C., Martins, A. A., & Mata, T. M. (2014). Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy, 16(7), 1423-1430. https://doi.org/10.1007/s10098-014-0773-0.
      Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24-36. https://doi.org/10.1016/j.tifs.2015.04.012.
      Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 902.
      Cervera-Mata, A., Pastoriza, S., Rufián-Henares, J. Á., Párraga, J., Martín-García, J. M., & Delgado, G. (2018). Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Archives of Agronomy and Soil Science, 64(6), 790-804. https://doi.org/10.1080/03650340.2017.1387651.
      Charrouf, Z., & Guillaume, D. (2018). The argan oil project: Going from utopia to reality in 20 years. OCL, 25(2), D209. https://doi.org/10.1051/ocl/2018006.
      Couto, R. M., Fernandes, J., da Silva, M. D. R. G., & Simões, P. C. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. The Journal of Supercritical Fluids, 51(2), 159-166. https://doi.org/10.1016/j.supflu.2009.09.009.
      Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., Morais, S., & Casal, S. (2012). Espresso coffee residues: A valuable source of unextracted compounds. Journal of Agricultural and Food Chemistry, 60(32), 7777-7784. https://doi.org/10.1021/jf3018854.
      Cruz, R., Mendes, E., Torrinha, A., Morais, S., Pereira, J. S., Baptista, P., & Casal, S. (2015). Revalorization of spent coffee residues by a direct agronomic approach. Food Research International, 73, 190-196. https://doi.org/10.1016/j.foodres.2014.11.018.
      Da Costa, M. A. J. L., De Gois, J. S., Toaldo, I. M., Bauerfeldt, A. C. F., Batista, D. B., Bordignon-Luiz, M. T., Do Lago, D. C. B., Luna, A. S., & De Senna, L. F. (2020). Optimization of espresso spent ground coffee waste extract preparation and the influence of its chemical composition as an eco-friendly corrosion inhibitor for carbon steel in acid medium. Materials Research, 23(5), e20190591. https://doi.org/10.1590/1980-5373-MR-2019-0591.
      Dattatraya Saratale, G., Bhosale, R., Shobana, S., Banu, J. R., Pugazhendhi, A., Mahmoud, E., Sirohi, R., Kant Bhatia, S., Atabani, A. E., Mulone, V., Yoon, J.-J., Seung Shin, H., & Kumar, G. (2020). A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresource Technology, 314, 123800. https://doi.org/10.1016/j.biortech.2020.123800.
      de Jong, A., Plat, J., & Mensink, R. P. (2003). Metabolic effects of plant sterols and stanols. The Journal of Nutritional Biochemistry, 14(7), 362-369. https://doi.org/10.1016/S0955-2863(03)00002-0.
      de Melo, M. M. R., Barbosa, H. M. A., Passos, C. P., & Silva, C. M. (2014). Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, oil characterization and economic analysis. The Journal of Supercritical Fluids, 86, 150-159. https://doi.org/10.1016/j.supflu.2013.12.016.
      de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Andrade Lara, J. M. R., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. https://doi.org/10.1016/j.ijfoodmicro.2014.07.008.
      Franca, A. S., Oliveira, L. S., & Ferreira, M. E. (2009). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249(1), 267-272. https://doi.org/10.1016/j.desal.2008.11.017.
      Gaidukova, G., Platnieks, O., Aunins, A., Barkane, A., Ingrao, C., & Gaidukovs, S. (2021). Spent coffee waste as a renewable source for the production of sustainable poly(Butylene succinate) biocomposites from a circular economy perspective. RSC Advances, 11(30), 18580-18589. https://doi.org/10.1039/D1RA03203H.
      Garcia, C. V., & Kim, Y.-T. (2021). Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. Journal of Polymers and the Environment, 29(8), 2372-2384. https://doi.org/10.1007/s10924-021-02067-9.
      Gharby, S., Harhar, H., Boulbaroud, S., Bouzoubaa, Z., El-Madani, N., Chafchaouni, I., & Charrouf, Z. (2014). The stability of vegetable oils (sunflower, rapeseed and palm) sold on the Moroccan market at high temperature. International Journal of Chemical and Biochemical Sciences, 5, 47-54.
      Gharby, S., Harhar, H., Guillaume, D., Haddad, A., Matthäus, B., & Charrouf, Z. (2011). Oxidative stability of edible argan oil: A two-year study. LWT - Food Science and Technology, 44(1), 1-8. https://doi.org/10.1016/j.lwt.2010.07.003.
      Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. International Journal of Food Sciences, 3(1), 1-32. https://doi.org/10.47604/ijf.1024.
      Goh, B. H. H., Ong, H. C., Chong, C. T., Chen, W.-H., Leong, K. Y., Tan, S. X., & Lee, X. J. (2020). Ultrasonic assisted oil extraction and biodiesel synthesis of spent coffee ground. Fuel, 261, 116121. https://doi.org/10.1016/j.fuel.2019.116121.
      Haddoudi, M., Mellouk, H., Bejjany, B., Dani, A., & Digua, K. (2014). Valorisation du marc du café: Extraction de l'huile et évaluation de son activité antioxydante. Les technologies de laboratoire., 8(36), 29-37.
      Hao, L., Wang, P., & Valiyaveettil, S. (2017). Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/srep42881.
      Hegnsholt, E., Unnikrishnan, S., Pollmann-Larsen, M., Askelsdottir, B., & Gerard, M. (2018). Tackling the 1.6-billion-ton food loss and waste crisis. The Boston Consulting Group.
      ICO, International Coffee Organization. (2021, October 15). What's New. Retrieved from https://www.ico.org/.
      Iriondo-DeHond, A., Iriondo-DeHond, M., & del Castillo, M. D. (2020). Applications of compounds from coffee processing by-products. Biomolecules, 10(9), 1219. https://doi.org/10.3390/biom10091219.
      Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117. https://doi.org/10.1016/j.resconrec.2017.10.001.
      Jeguirim, M., Limousy, L., & Fossard, E. (2016). Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy, 13(6), 608-615. https://doi.org/10.1080/15435075.2014.888664.
      Jenkins, R. W., Stageman, N. E., Fortune, C. M., & Chuck, C. J. (2014). Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy & Fuels, 28(2), 1166-1174. https://doi.org/10.1021/ef4022976.
      Kakkar, S., & Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. International Scholarly Research Notices, 2014(9), 1-9. https://doi.org/10.1155/2014/952943.
      Kanlayavattanakul, M., Lourith, N., & Chaikul, P. (2021). Valorization of spent coffee grounds as the specialty material for dullness and aging of skin treatments. Chemical and Biological Technologies in Agriculture, 8(1), 1-16. https://doi.org/10.1186/s40538-021-00252-5.
      Karmee, S. K. (2018). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 72, 240-254. https://doi.org/10.1016/j.wasman.2017.10.042.
      Khairil Anuar, M., Mohd Zin, Z., Juhari, N. H., Binti Mamat, H., Smedley, K. L., & Zainol, K. (2020). Influence of pectinase-assisted extraction time on the antioxidant capacity of Spent Coffee Ground (SCG). Food Research, 4, 2054-2061. https://doi.org/10.26656/fr.2017.4(6).270.
      Khoo, S. C., Ma, N. L., Peng, W. X., Ng, K. K., Goh, M. S., Chen, H. L., Tan, S. H., Lee, C. H., Luang-In, V., & Sonne, C. (2022). Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum. Chemosphere, 286, 131477. https://doi.org/10.1016/j.chemosphere.2021.131477.
      Kim, J., Kim, H., Baek, G., & Lee, C. (2017). Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production. Waste Management, 60, 322-328. https://doi.org/10.1016/j.wasman.2016.10.015.
      Korbecki, J., & Bajdak-Rusinek, K. (2019). The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflammation Research, 68(11), 915-932. https://doi.org/10.1007/s00011-019-01273-5.
      Koushki, M., Nahidi, M., & Cheraghali, F. (2015). Physico-chemical properties, fatty acid profile and nutrition in palm oil. Archives of Advances in Biosciences, 6(3), 117-134. https://doi.org/10.22037/JPS.V6I3.9772.
      Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing, 110, 104-119. https://doi.org/10.1016/j.fbp.2018.05.002.
      Kuan, C. Y., Yuen, K. L., Bhat, R., & Liong, M. T. (2011). Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Research International, 44(9), 2822-2829. https://doi.org/10.1016/j.foodres.2011.06.023.
      Lago, R. C. A., Antoniassi, R., & Freitas, S. C. (2001). Centesimal composition and amino acids of raw, roasted and spent ground of soluble coffee. Simpósio de Pesquisa Dos Cafés Do Brasil Vitoria, II, 1473-1477.
      Leal Vieira Cubas, A., Medeiros Machado, M., Tayane Bianchet, R., Alexandra da Costa Hermann, K., Alexsander Bork, J., Angelo Debacher, N., Flores Lins, E., Maraschin, M., Sousa Coelho, D., & Helena Siegel Moecke, E. (2020). Oil extraction from spent coffee grounds assisted by non-thermal plasma. Separation and Purification Technology, 250, 117171. https://doi.org/10.1016/j.seppur.2020.117171.
      Limousy, L., Jeguirim, M., Labbe, S., Balay, F., & Fossard, E. (2015). Performance and emissions characteristics of compressed spent coffee ground/wood chip logs in a residential stove. Energy for Sustainable Development, 28, 52-59. https://doi.org/10.1016/j.esd.2015.07.002.
      López-Linares, J. C., García-Cubero, M. T., Coca, M., & Lucas, S. (2021). A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass and Bioenergy, 147, 106026. https://doi.org/10.1016/j.biombioe.2021.106026.
      Magalhães, L. M., Machado, S., Segundo, M. A., Lopes, J. A., & Páscoa, R. N. (2016). Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta, 147, 460-467. https://doi.org/10.1016/j.talanta.2015.10.022.
      Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9), 17339-17361. https://doi.org/10.3390/molecules200917339.
      Marx, S., Venter, R., Karmee, S. K., Louw, J., & Truter, C. (2020). Biofuels from spent coffee grounds: Comparison of processing routes. Biofuels, 13(5), 537-543. https://doi.org/10.1080/17597269.2020.1793538.
      Massaya, J., Prates Pereira, A., Mills-Lamptey, B., Benjamin, J., & Chuck, C. J. (2019). Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food and Bioproducts Processing, 118, 149-166. https://doi.org/10.1016/j.fbp.2019.08.010.
      McNutt, J., & He, Q. (Sophia). (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71, 78-88. https://doi.org/10.1016/j.jiec.2018.11.054.
      Mendoza Martinez, C. L., Saari, J., Melo, Y., Cardoso, M., de Almeida, G. M., & Vakkilainen, E. (2021). Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case. Renewable and Sustainable Energy Reviews, 137, 110585. https://doi.org/10.1016/j.rser.2020.110585.
      Muangrat, R., & Pongsirikul, I. (2019). Recovery of spent coffee grounds oil using supercritical CO 2: Extraction optimisation and physicochemical properties of oil. CyTA - Journal of Food, 17(1), 334-346. https://doi.org/10.1080/19476337.2019.1580771.
      Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. https://doi.org/10.1016/j.seppur.2011.09.036.
      Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83(2), 368-374. https://doi.org/10.1016/j.carbpol.2010.07.06.
      Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661-672. https://doi.org/10.1007/s11947-011-0565-z.
      Nickavar, B., Mojab, F., Javidnia, K., & Amoli, M. A. R. (2003). Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Zeitschrift Für Naturforschung C, 58(9-10), 629-631. https://doi.org/10.1515/znc-2003-9-1004.
      Nzekoue, F. K., Khamitova, G., Angeloni, S., Sempere, A. N., Tao, J., Maggi, F., Xiao, J., Sagratini, G., Vittori, S., & Caprioli, G. (2020). Spent coffee grounds: A potential commercial source of phytosterols. Food Chemistry, 325, 126836. https://doi.org/10.1016/j.foodchem.2020.126836.
      Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., & Marova, I. (2014). Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochemistry, 49(9), 1409-1414. https://doi.org/10.1016/j.procbio.2014.05.013.
      Obruca, S., Petrik, S., Benesova, P., Svoboda, Z., Eremka, L., & Marova, I. (2014). Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 98(13), 5883-5890. https://doi.org/10.1007/s00253-014-5653-3.
      Okur, I., Soyler, B., Sezer, P., Oztop, M. H., & Alpas, H. (2021). Improving the recovery of phenolic compounds from spent coffee grounds (SCG) by environmentally friendly extraction techniques. Molecules, 26(3), 613. https://doi.org/10.3390/molecules26030613.
      Panpraneecharoen, S., & Chumanee, S. (2020). Optimization of the oil extraction, study the chemical and physical properties of arabica spent coffee grounds. Science and Technology Asia, 25(4), 12-19. https://doi.org/10.14456/scitechasia.2020.45.
      Passadis, K., Fragoulis, V., Stoumpou, V., Novakovic, J., Barampouti, E. M., Mai, S., Moustakas, K., Malamis, D., & Loizidou, M. (2020). Study of valorisation routes of spent coffee grounds. Waste and Biomass Valorization, 11(10), 5295-5306. https://doi.org/10.1007/s12649-020-01096-0.
      Phimsen, S., Kiatkittipong, W., Yamada, H., Tagawa, T., Kiatkittipong, K., Laosiripojana, N., & Assabumrungrat, S. (2016). Oil extracted from spent coffee grounds for bio-hydrotreated diesel production. Energy Conversion and Management, 126, 1028-1036. https://doi.org/10.1016/j.enconman.2016.08.085.
      Plaza, M. G., González, A. S., Pevida, C., Pis, J. J., & Rubiera, F. (2012). Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 99, 272-279. https://doi.org/10.1016/j.apenergy.2012.05.028.
      Pujol, D., Liu, C., Gominho, J., Olivella, M. À., Fiol, N., Villaescusa, I., & Pereira, H. (2013). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423-429. https://doi.org/10.1016/j.indcrop.2013.07.056.
      Ribeiro, H., Marto, J., Raposo, S., Agapito, M., Isaac, V., Chiari, B. G., Lisboa, P. F., Paiva, A., Barreiros, S., & Simões, P. (2013). From coffee industry waste materials to skin-friendly products with improved skin fat levels. European Journal of Lipid Science and Technology, 115(3), 330-336. https://doi.org/10.1002/ejlt.201200239.
      Ronga, D., Parisi, M., Barbieri, L., Lancellotti, I., Andreola, F., & Bignami, C. (2020). Valorization of spent coffee grounds, biochar and other residues to produce lightweight clay ceramic aggregates suitable for nursery grapevine production. Horticulturae, 6(4), 1-13. https://doi.org/10.3390/horticulturae6040058.
      Samsalee, N., & Sothornvit, R. (2021). Physicochemical, functional properties and antioxidant activity of protein extract from spent coffee grounds using ultrasonic-assisted extraction. AIMS Agriculture and Food, 6(3), 864-878. https://doi.org/10.3934/agrfood.2021052.
      Santana, M. S., Alves, R. P., Santana, L. S., Gonçalves, M. A., & Guerreiro, M. C. (2022). Structural, inorganic, and adsorptive properties of hydrochars obtained by hydrothermal carbonization of coffee waste. Journal of Environmental Management, 302, 114021. https://doi.org/10.1016/j.jenvman.2021.114021.
      Sant'Anna, V., Biondo, E., Kolchinski, E. M., da Silva, L. F. S., Corrêa, A. P. F., Bach, E., & Brandelli, A. (2017). Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste and Biomass Valorization, 8(2), 439-442.
      Santos, C., Fonseca, J., Aires, A., Coutinho, J., & Trindade, H. (2017). Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Management, 59, 37-47. https://doi.org/10.1016/j.wasman.2016.10.020.
      Sharma, A., Ray, A., & Singhal, R. S. (2021). A biorefinery approach towards valorization of spent coffee ground: Extraction of the oil by supercritical carbon dioxide and utilizing the defatted spent in formulating functional cookies. Future Foods, 4, 100090. https://doi.org/10.1016/j.fufo.2021.100090.
      Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A., Bikaki, M., Corvini, P., Ferri, M., Tassoni, A., & Navarini, L. (2021). Monomers, materials and energy from coffee by-products: A review. Sustainability, 13(12), 6921. https://doi.org/10.3390/su13126921.
      Somnuk, K., Eawlex, P., & Prateepchaikul, G. (2017). Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agriculture and Natural Resources, 51(3), 181-189. https://doi.org/10.1016/j.anres.2017.01.003.
      Spiller, G. A., Jenkins, D. A., Bosello, O., Gates, J. E., Cragen, L. N., & Bruce, B. (1998). Nuts and plasma lipids: An almond-based diet lowers LDL-C while preserving HDL-C. Journal of the American College of Nutrition, 17(3), 285-290. https://doi.org/10.1080/07315724.1998.10718761.
      Suksiripattanapong, C., Kua, T. A., Arulrajah, A., Maghool, F., & Horpibulsuk, S. (2017). Strength and microstructure properties of spent coffee grounds stabilized with rice husk ash and slag geopolymers. Construction and Building Materials, 146, 312-320. https://doi.org/10.1016/j.conbuildmat.2017.04.103.
      Syomiti, M., Bauni, M., Kariuki, I. W., Gachuri, C., Mutua, S., & Malala, D. (2014). Evaluation of early calves' weaning diet as milk replacer for smallholder dairy production systems in Kenya. African Crop Science Journal, 22, 951-957.
      Taoufik, F., Zine, S., El Hadek, M., Idrissi Hassani, L. M., Gharby, S., Harhar, H., & Matthäus, B. (2015). Oil content and main constituents of cactus seed oils Opuntia Ficus Indica of different origin in Morocco. Mediterranean Journal of Nutrition and Metabolism, 8(2), 85-92. https://doi.org/10.3233/MNM-150036.
      Tian, H., Zhou, T., Huang, Z., Wang, J., Cheng, H., & Yang, Y. (2021). Integration of spent coffee grounds valorization for co-production of biodiesel and activated carbon: An energy and techno-economic case assessment in China. Journal of Cleaner Production, 324, 129187. https://doi.org/10.1016/j.jclepro.2021.129187.
      Trautwein, E. A., Duchateau, G. S. M. J. E., Lin, Y., Mel'nikov, S. M., Molhuizen, H. O. F., & Ntanios, F. Y. (2003). Proposed mechanisms of cholesterol-lowering action of plant sterols. European Journal of Lipid Science and Technology, 105(3-4), 171-185. https://doi.org/10.1002/ejlt.200390033.
      Tuntiwiwattanapun, N., Usapein, P., & Tongcumpou, C. (2017). The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in-situ transesterification process. Energy for Sustainable Development, 40, 50-58. https://doi.org/10.1016/j.esd.2017.07.002.
      Yoo, D. E., Jeong, K. M., Han, S. Y., Kim, E. M., Jin, Y., & Lee, J. (2018). Deep eutectic solvent-based valorization of spent coffee grounds. Food Chemistry, 255, 357-364. https://doi.org/10.1016/j.foodchem.2018.02.096.
      Yordanov, D., Mustafa, Z., Milina, R., & Tsonev, Z. (2016). Multi-criteria optimisation process of the oil extraction from spent coffee ground by various solvents. Oxidation Communications, 39(2), 1478-1487.
      Zabaniotou, A., & Kamaterou, P. (2019). Food waste valorization advocating Circular Bioeconomy-A critical review of potentialities and perspectives of spent coffee grounds biorefinery. Journal of Cleaner Production, 211, 1553-1566. https://doi.org/10.1016/j.jclepro.2018.11.230.
      Zuorro, A., & Lavecchia, R. (2012). Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. Journal of Cleaner Production, 34, 49-56. https://doi.org/10.1016/j.fbp.2021.03.015.
    • Contributed Indexing:
      Keywords: antioxidants; coffee waste; composition; environment; oil
    • الرقم المعرف:
      0 (Coffee)
      0 (Fatty Acids)
    • الموضوع:
      Date Created: 20220513 Date Completed: 20220810 Latest Revision: 20220930
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1111/jfbc.14190
    • الرقم المعرف:
      35553079