References: Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968;31:488-94.
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci. 2020;275:102061.
Vo TTT, Liu JF, Wu C-Z, Lin W-N, Chen Y-L, Lee I-T. Surfactin from Bacillus subtilis induces apoptosis in human oral squamous cell carcinoma through ROS-regulated mitochondrial pathway. J Cancer. 2020;11:7253-63.
Hajfarajollah H, Eslami P, Mokhtarani B, Akbari Noghabi K. Biosurfactants from probiotic bacteria: a review. Biotechnol Appl Biochem. 2018;65:768-83.
Varjani S, Pandey A, Upasani VN. Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium - a microcosm approach. Sci Total Environ. 2020;745:141043.
Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, et al. Sorption, transport and biodegradation - an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ. 2018;610-611:1154-63.
Fei D, Zhou G-W, Yu Z-Q, Gang H-Z, Liu J-F, Yang S-Z, et al. Low-Toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations. J Surfactants Deterg. 2020;23:109-18.
Joshi GS, Banat IM, Joshi SJ. Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal Agric Biotechnol. 2018;14:23-32.
Zhi Y, Wu Q, Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci Rep. 2017;7:40976.
Nazareth TC, Zanutto CP, Tripathi L, Juma A, Maass D, De Souza AAU, et al. The use of low-cost brewery waste product for the production of surfactin as a natural microbial biocide. Biotechnol Rep. 2020;28:e00537.
Zanotto AW, Valério A, De Andrade CJ, Pastore GM. New sustainable alternatives to reduce the production costs for surfactin 50 years after the discovery. Appl Microbiol Biotechnol. 2019;103:8647-56.
Prado AAOS, Santos BLP, Vieira IMM, Ramos LC, De Souza RR, Silva DP, et al. Evaluation of a new strategy in the elaboration of culture media to produce surfactin from hemicellulosic corncob liquor. Biotechnol Rep. 2019;24:e00364.
Fonseca RR, Silva AJR, De França FP, Cardoso VL, Sérvulo EFC. Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol. 2007;137-140:471-86.
Yeh M-S, Wei Y-H, Chang J-S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem. 2006;41:1799-805.
Hu F, Liu Y, Li S. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microb Cell Fact. 2019;18:42.
Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol. 2009;55:1003-6.
Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, et al. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production. J Biotechnol. 2016;224:14-7.
Jiao S, Li X, Yu H, Yang H, Li X, Shen Z. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng. 2017;114:832-42.
Wang Q, Yu H, Wang M, Yang H, Shen Z. Enhanced biosynthesis and characterization of surfactin isoforms with engineered Bacillus subtilis through promoter replacement and Vitreoscilla hemoglobin coexpression. Process Biochem. 2018;70:36-44.
Hoffmann M, Braig A, Fernandez Cano Luna DS, Rief K, Becker P, Treinen C, et al. Evaluation of an oxygen-dependent self-inducible surfactin synthesis in B. subtilis by substitution of native promoter PsrfA by anaerobically active PnarG and PnasD. AMB Express. 2021;11:57.
Sun J, Liu Y, Lin F, Lu Z, Lu Y. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J Appl Microbiol. 2021;131:1289-304.
Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol Bioeng. 2012;109:2349-56.
Wu Q, Zhi Y, Xu Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab Eng. 2019;52:87-97.
Tsuge K, Ohata Y, Shoda M, Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother. 2001;45:3566-73.
Li X, Yang H, Zhang D, Li X, Yu H, Shen Z. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. J Ind Microbiol Biotechnol. 2015;42:93-103.
Dhali D, Coutte F, Arias AA, Auger S, Bidnenko V, Chataigné G, et al. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C 14 isoform. Biotechnol J. 2017;12:1600574.
Wang M, Yu H, He X, Li Y, Yang H. Construction and optimization of engineered Bacillus subtilis for surfactin production. Chin J Biotechnol. 2020;36:2377-86.
Wang C, Cao Y, Wang Y, Sun L, Song H. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb Cell Fact. 2019;18:90.
Nickels JD, Chatterjee S, Mostofian B, Stanley CB, Ohl M, Zolnierczuk P, et al. Bacillus subtilis lipid extract, a branched-chain fatty acid model membrane. J Phys Chem Lett. 2017;8:4214-7.
Hu F, Cai W, Lin J, Wang W, Li S. Genetic engineering of the precursor supply pathway for the overproduction of the nC14-surfactin isoform with promising MEOR applications. Microb Cell Fact. 2021;20:96.
Anagnostopoulos C, Spizizen J, Requirements for transformation in Bacillus subtilis. J Bacteriol. 1961;81:741-6.
Sambrock J, Russel DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.
Liu J-F, Yang J, Yang S-Z, Ye R-Q, Mu B-Z. Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Appl Biochem Biotechnol. 2012;166:2091-100.
Mu B-Z, Liu F-F, Liu Y-F, Qiao Y-W, Guo Y-Z, Kuang F-Y, et al. Improvement surfactin production by substitution of promoters in Bacillus subtilis TD7. Appl Environ Biotechnol. 2021;6:31-41.
Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol. 2016;82:5421-7.
Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. 2013;70:863-91.
Wang M, Yu H, Shen Z. Antisense RNA-based strategy for enhancing surfactin production in Bacillus subtilis TS1726 via overexpression of the unconventional biotin carboxylase II to enhance ACCase activity. ACS Synth Biol. 2019;8:251-6.
Choi K-H, Heath RJ, Rock CO. Î2-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol. 2000;182:365-70.
Youssef NH, Wofford N, Mcinerney MJ. Importance of the long-chain fatty acid beta-hydroxylating cytochrome P450 enzyme YbdT for lipopeptide biosynthesis in Bacillus subtilis strain OKB105. Int J Mol Sci. 2011;12:1767-86.
Lu Y-J, Zhang Y-M, Rock CO. Product diversity and regulation of type II fatty acid synthases. Biochem Cell Biol. 2004;82:145-55.
Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103-13.
No Comments.