Item request has been placed!
×
Item request cannot be made.
×

Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Li T;Li T; Gong X; Gong X; Yang G; Yang G; Li Q; Li Q; Huang J; Huang J; Huang J; Zhou N; Zhou N; Jia X; Jia X
- المصدر:
Bioprocess and biosystems engineering [Bioprocess Biosyst Eng] 2022 May; Vol. 45 (5), pp. 865-875. Date of Electronic Publication: 2022 Feb 19.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101088505 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-7605 (Electronic) Linking ISSN: 16157591 NLM ISO Abbreviation: Bioprocess Biosyst Eng Subsets: MEDLINE
- بيانات النشر: Original Publication: Berlin, Germany : Springer-Verlag, 2001-
- الموضوع:
- نبذة مختصرة : In this study, cross-linked cellulase aggregates (C-CLEAs) were synthesized by precipitation of cellulase with ammonium sulfate and then cross-linking with glutaraldehyde. The results revealed that the optimal pH of C-CLEAs shifted toward a more acidic environment by 2.0 pH units, and the optimal temperature shifted toward higher temperature by 20 °C after immobilization. The half-life (t
1/2 ) and inactivation energy (Ed ) values of the C-CLEAs were 5.98 times and 1.93 times than that of free cellulase, respectively. Moreover, the C-CLEAs can also maintain about 65.22% of activity after 10 cycles and 63.03% of activity after storage for 56 days at 4 °C. Enzymatic hydrolysis of carboxymethylcellulose sodium and corncob in C-CLEAs system verified that the C-CLEAs performed better than free cellulase (P < 0.01).
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) - References: Wu XJ, Luo NC, Xie SJ, Zhang HK, Zhang QH, Wang F, Wang Y (2020) Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 49(17):6198–6223. https://doi.org/10.1039/D0CS00314J. (PMID: 10.1039/D0CS00314J32756629)
Wang Y, Gong XW, Hu XN, Zhou N (2019) Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release. Bioresour Technol 276:343–348. https://doi.org/10.1016/j.biortech.2019.01.008. (PMID: 10.1016/j.biortech.2019.01.00830641333)
Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457. https://doi.org/10.1016/j.energy.2020.117457. (PMID: 10.1016/j.energy.2020.117457)
Shimizu FL, Monteiro PQ, Ghiraldi PHC, Melati RB, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115:62–68. https://doi.org/10.1016/j.indcrop.2018.02.024. (PMID: 10.1016/j.indcrop.2018.02.024)
Zhang ZY, Vancov T, Mackintosh S, Basu B, Lali A, Qian GR, Hobson P, Doherty WOS (2016) Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23(6):3771–3783. https://doi.org/10.1007/s10570-016-1043-6. (PMID: 10.1007/s10570-016-1043-6)
Tan XS, Yu Q, Zhao Y, Zhuang XS, Wang Q, Qi W, Zhang Y, Yuan ZH, Wang ZM, Qin YL, Guo Y (2019) Solid base pretreatment to improve the accessibility of lignocellulosic molecules for biomass recovery. Cellulose 26(15):8453–8464. https://doi.org/10.1007/s10570-019-02564-0. (PMID: 10.1007/s10570-019-02564-0)
Zhu YT, Liu J, Lv W, Pi QF, Zhang XH, Chen LG, Liu QY, Xu Y, Zhang Q, Ma LL, Wang CG (2020) Revisiting alkaline pretreatment of lignocellulose: understanding the structural evolution of three components. Adv Sustain Syst 4(10):2000067. https://doi.org/10.1002/adsu.202000067. (PMID: 10.1002/adsu.202000067)
Jung YH, Park HM, Kim IJ, Park YC, Seo JH, Kim KH (2014) One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv 4(98):55318–55327. https://doi.org/10.1039/c4ra10092a. (PMID: 10.1039/c4ra10092a)
Guo B, Zhang YH, Yu G, Lee WH, Jin YS, Morgenroth E (2013) Two-stage acidic-alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars. Appl Biochem Biotechnol 169(4):1069–1087. https://doi.org/10.1007/s12010-012-0038-5. (PMID: 10.1007/s12010-012-0038-523306881)
Lee CBTL, Wu TY (2021) A review on solvent systems for furfural production from lignocellulosic biomass. Renew Sustain Energy Rev 137:110172. https://doi.org/10.1016/j.rser.2020.110172. (PMID: 10.1016/j.rser.2020.110172)
Zang LM, Qiu JH, Wu XL, Zhang WJ, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454. https://doi.org/10.1021/ie404072s. (PMID: 10.1021/ie404072s)
Qi BK, Luo JQ, Wan YH (2018) Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Bioresour Technol 268:577–582. https://doi.org/10.1016/j.biortech.2018.07.115. (PMID: 10.1016/j.biortech.2018.07.11530130719)
Xu JL, Huo SH, Yuan ZH, Zhang Y, Xu HJ, Guo Y, Liang CY, Zhuang XS (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticle. Biocatal Biotransform 29(2–3):71–76. https://doi.org/10.3109/10242422.2011.566326. (PMID: 10.3109/10242422.2011.566326)
Li L, Xie J, Yu ST, Su ZL, Liu SW, Liu FS, Xie CX, Zhang BQ, Zhang CG (2013) N-terminal PEGylated cellulase: a high stability enzyme in 1-butyl-3-methylimidazolium chloride. Green Chem 15(6):1624–1630. https://doi.org/10.1039/c3gc40104a. (PMID: 10.1039/c3gc40104a)
Yu ST, Chen PP, Liu XH, Li L (2015) Degradation of chitosan by modified cellulase in the ionic liquid system. Catal Lett 145(10):1845–1850. https://doi.org/10.1007/s10562-015-1596-2. (PMID: 10.1007/s10562-015-1596-2)
Zheng F, Tu T, Wang XY, Wang Y, Ma R, Su XY, Xie XM, Yao B, Luo HY (2018) Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels 11(1):76. https://doi.org/10.1186/s13068-018-1080-5. (PMID: 10.1186/s13068-018-1080-5295886615863444)
Talekar S, Vijayraghavan R, Arora A, Patti AF (2020) Greener production of low methoxy pectin via recyclable enzymatic de-esterification using pectin methyl esterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocolloids 108:105786. https://doi.org/10.1016/j.foodhyd.2020.105786. (PMID: 10.1016/j.foodhyd.2020.105786)
Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia A, Fernandez-Lafuente R (2016) Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. Chem Rec 16(3):1436–1455. https://doi.org/10.1002/tcr.201600007. (PMID: 10.1002/tcr.20160000727166751)
Li CY, Zhang RH, Wang J, Wilson LM, Yan YJ (2020) Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol 38(7):729–744. https://doi.org/10.1016/j.tibtech.2019.12.008. (PMID: 10.1016/j.tibtech.2019.12.008319545307274900)
Carceller JM, Galan JPM, Monti R, Bassan JC, Filice M, Iborra S, Yu JH, Corma A (2019) Selective synthesis of citrus flavonoids prunin and naringenin using heterogenized biocatalyst on graphene oxide. Green Chem 21(4):839–849. https://doi.org/10.1039/c8gc03661f. (PMID: 10.1039/c8gc03661f)
Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169. https://doi.org/10.1016/j.ijbiomac.2016.06.081. (PMID: 10.1016/j.ijbiomac.2016.06.08127365121)
Abd Rahman NH, Jaafar NR, Murad AMA, Abu Bakar FD, Annuar NAS, Illias RM (2020) Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 159:577–589. https://doi.org/10.1016/j.ijbiomac.2020.04.262. (PMID: 10.1016/j.ijbiomac.2020.04.26232380107)
Sellami K, Couvert A, Nasrallah N, Maachi R, Tandjaoui N, Abouseoud M, Amrane A (2021) Bio-based and cost effective method for phenolic compounds removal using cross-linked enzyme aggregates. J Hazard Mater 403:124021. https://doi.org/10.1016/j.jhazmat.2020.124021. (PMID: 10.1016/j.jhazmat.2020.12402133265046)
Bian HJ, Cao MF, Wen H, Tan ZL, Jia SR, Cui JD (2019) Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int J Biol Macromol 124:10–16. https://doi.org/10.1016/j.ijbiomac.2018.11.204. (PMID: 10.1016/j.ijbiomac.2018.11.20430471390)
Hero JS, Romero CM, Pisa JH, Perotti NI, Olivaro C, Martinez MA (2018) Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol 111:229–236. https://doi.org/10.1016/j.ijbiomac.2017.12.166. (PMID: 10.1016/j.ijbiomac.2017.12.16629307801)
Kulkarni NH, Muley AB, Bedade DK, Singhal RS (2020) Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 43(3):457–471. https://doi.org/10.1007/s00449-019-02240-4. (PMID: 10.1007/s00449-019-02240-431705314)
Kannan S, Marudhamuthu M (2019) Development of chitin cross-linked enzyme aggregates of L-methioninase for upgraded activity, permanence and application as efficient therapeutic formulations. Int J Biol Macromol 141:218–231. https://doi.org/10.1016/j.ijbiomac.2019.08.246. (PMID: 10.1016/j.ijbiomac.2019.08.24631479672)
Liu Y, Yang JY, Wang K, Duan FY, Lu LL (2021) Carrier-free immobilization of α-galactosidase as nano-biocatalysts for synthesizing prebiotic α-galacto-oligosaccharides. Molecules 26(5):1248. https://doi.org/10.3390/molecules26051248. (PMID: 10.3390/molecules26051248336691577956481)
Ahmed IN, Yang XL, Dubale AA, Li RF, Ma YM, Wang LM, Hou GH, Guan RF, Xie MH (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium-based metal-organic frameworks. Bioresour Technol 270:377–382. https://doi.org/10.1016/j.biortech.2018.09.077. (PMID: 10.1016/j.biortech.2018.09.07730243245)
Li B, Dong SL, Xie XL, Xu ZB, Li L (2012) Preparation and properties of cross-linked enzyme aggregates of cellulase. Adv Mater Res 581–582:257–260. https://doi.org/10.4028/www.scientific.net/AMR.581-582.257. (PMID: 10.4028/www.scientific.net/AMR.581-582.257)
Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275. https://doi.org/10.1016/j.biortech.2013.08.035. (PMID: 10.1016/j.biortech.2013.08.03523999260)
Ullah H, Pervez S, Ahmed S, Haleem KS, Tauseef I (2021) Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol 173:267–276. https://doi.org/10.1016/j.ijbiomac.2021.01.057. (PMID: 10.1016/j.ijbiomac.2021.01.05733454331)
Parveen S, Asgher M, Bilal M (2020) Lignin peroxidase-based cross-linked enzyme aggregates (LiP-CLEAs) as robust biocatalytic materials for mitigation of textile dyes-contaminated aqueous solution. Environ Technol Innovation 21:101226. https://doi.org/10.1016/j.eti.2020.101226. (PMID: 10.1016/j.eti.2020.101226)
Pervez S, Nawaz MA, Shahid F, Aman A, Tauseef I, Ul Qader SA (2019) Characterization of cross-linked amyloglucosidase aggregates from aspergillus fumigatus KIBGE-IB33 for continuous production of glucose. Int J Biol Macromol 135:1252–1260. https://doi.org/10.1016/j.ijbiomac.2018.11.097. (PMID: 10.1016/j.ijbiomac.2018.11.09730447367)
Sadeghzadeh S, Nejad ZG, Ghasemi S, Khafaji M, Borghei SM (2020) Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute. Bioresour Technol 306:123169. https://doi.org/10.1016/j.biortech.2020.123169. (PMID: 10.1016/j.biortech.2020.12316932182473)
Bindu VU, Mohanan PV (2020) Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res 498:108185. https://doi.org/10.1016/j.carres.2020.108185. (PMID: 10.1016/j.carres.2020.10818533137584)
Wang SG, Zheng DB, Yin LY, Wang F (2017) Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzyme Microb Technol 107:22–31. https://doi.org/10.1016/j.enzmictec.2017.07.008. (PMID: 10.1016/j.enzmictec.2017.07.00828899483)
Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78. https://doi.org/10.1016/j.ijbiomac.2015.11.082. (PMID: 10.1016/j.ijbiomac.2015.11.08226675136)
Qian JQ, Zhao CY, Ding J, Chen Y, Guo H (2020) Preparation of nano-enzyme aggregates by crosslinking lipase with sodium tripolyphosphate. Process Biochem 97:19–26. https://doi.org/10.1016/j.procbio.2020.06.026. (PMID: 10.1016/j.procbio.2020.06.026)
Deng X, He T, Li J, Duan HL, Zhang ZQ (2020) Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis. Bioprocess Biosyst Eng 43:2209–2217. https://doi.org/10.1007/s00449-020-02406-5. (PMID: 10.1007/s00449-020-02406-532671548)
Wang DQ, Zheng P, Chen PC, Wu D (2021) Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin. Bioresour Technol 323:124611. https://doi.org/10.1016/j.biortech.2020.124611. (PMID: 10.1016/j.biortech.2020.12461133418354)
Xu MQ, Li FL, Yu WQ, Li RF, Zhang YW (2020) Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD + regeneration. Int J Biol Macromol 144:1013–1021. https://doi.org/10.1016/j.ijbiomac.2019.09.178. (PMID: 10.1016/j.ijbiomac.2019.09.17831669469)
Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43(2):125–131. https://doi.org/10.1016/j.procbio.2007.11.001. (PMID: 10.1016/j.procbio.2007.11.001)
Wang Y, Feng CY, Guo RX, Ma YF, Yuan Y, Liu YP (2021) Cellulase immobilized by sodium alginate-polyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose. Process Biochem 107:38–47. https://doi.org/10.1016/j.procbio.2021.02.018. (PMID: 10.1016/j.procbio.2021.02.018)
Zhu Y, Han J, Wu JC, Li YY, Wang L, Mao YL, Wang Y (2021) A two-step method for the synthesis of magnetic immobilized cellulase with outstanding thermal stability and reusability. New J Chem 45(13):6144–6150. https://doi.org/10.1039/d0nj06037b. (PMID: 10.1039/d0nj06037b)
Duman YA, Tufan G, Kaya AU (2020) Immobilization of cellulase on vermiculite and the effects on enzymatic kinetics and thermodynamics. Appl Clay Sci 197:105792. https://doi.org/10.1016/j.clay.2020.105792. (PMID: 10.1016/j.clay.2020.105792)
Mortazavi S, Aghaei H (2020) Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified na-sepiolite. Int J Biol Macromol 164:1–12. https://doi.org/10.1016/j.ijbiomac.2020.07.103. (PMID: 10.1016/j.ijbiomac.2020.07.10332679334)
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS (2021) Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 44(7):1383–1404. https://doi.org/10.1007/s00449-021-02509-7. (PMID: 10.1007/s00449-021-02509-733660099)
Zhang YB, Hu P, Muhammad Y, Tang Y, Shao S, Gao Z, Wang JX, Wang RM, Hu Y, Kuang LH, Zhao ZX, Zhao ZX (2021) High-density immobilization of laccase on hollow nano-sphere NH2 -MIL88 (Fe) host with interfacial defects to improve enzyme activity and stability for remazol brilliant blue R decolorization. Chem Eng J 405:127003. https://doi.org/10.1016/j.cej.2020.127003. (PMID: 10.1016/j.cej.2020.127003) - Grant Information: SHYL-DK201803 General Science and Technology Project of "Double First Class University Plan" Construction of Shihezi University; 21464011 National Natural Science Foundation of China
- Contributed Indexing: Keywords: Catalytic activity; Cross-linked cellulase aggregates; Enzymatic saccharification; Thermal stability
- الرقم المعرف: 0 (Cross-Linking Reagents)
0 (Enzymes, Immobilized)
EC 3.2.1.4 (Cellulase)
T3C89M417N (Glutaral) - الموضوع: Date Created: 20220220 Date Completed: 20220426 Latest Revision: 20220426
- الموضوع: 20250114
- الرقم المعرف: 10.1007/s00449-022-02704-0
- الرقم المعرف: 35184224
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.