Item request has been placed!
×
Item request cannot be made.
×

Diversity of cultivable bacteria from deep-sea sediments of the Colombian Caribbean and their potential in bioremediation.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Blandón LM;Blandón LM; Marín MA; Marín MA; Quintero M; Quintero M; Jutinico-Shubach LM; Jutinico-Shubach LM; Montoya-Giraldo M; Montoya-Giraldo M; Santos-Acevedo M; Santos-Acevedo M; Gómez-León J; Gómez-León J
- المصدر:
Antonie van Leeuwenhoek [Antonie Van Leeuwenhoek] 2022 Mar; Vol. 115 (3), pp. 421-431. Date of Electronic Publication: 2022 Jan 23.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: Netherlands NLM ID: 0372625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1572-9699 (Electronic) Linking ISSN: 00036072 NLM ISO Abbreviation: Antonie Van Leeuwenhoek Subsets: MEDLINE
- بيانات النشر: Publication: 2004- : Berlin : Springer
Original Publication: Wageningen, Netherland [etc.] Veenman [etc.] - الموضوع:
- نبذة مختصرة : The diversity of deep-sea cultivable bacteria was studied in seven sediment samples of the Colombian Caribbean. Three hundred and fifty two marine bacteria were isolated according to its distinct morphological character on the solid media, then DNA sequences of the 16S rRNA were amplified to identify the isolated strains. The identified bacterial were arranged in three phylogenetic groups, Firmicutes, Proteobacteria, and Actinobacteria, with 34 different OTUs defined at ≥ 97% of similarity and 70 OTUs at ≥ 98.65%, being the 51% Firmicutes, 34% Proteobacteria and 15% Actinobacteria. Bacillus and Fictibacillus were the dominant genera in Firmicutes, Halomonas and Pseudomonas in Proteobacteria and Streptomyces and Micromonospora in Actinobacteria. In addition, the strains were tested for biosurfactants and lipolytic enzymes production, with 120 biosurfactant producing strains (mainly Firmicutes) and, 56 lipolytic enzymes producing strains (Proteobacteria). This report contributes to the understanding of the diversity of the marine deep-sea cultivable bacteria from the Colombian Caribbean, and their potential application as bioremediation agents.
(© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) - References: Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. Nov. Sp. Nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. Nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. Nov. Int J Syst Evol Microbiol 57(5):1117–1125. https://doi.org/10.1099/ijs.0.63867-0. (PMID: 10.1099/ijs.0.63867-017473269)
Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2014) Aquibacillus halophilus gen. Nov., sp. Nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. Nov. and Virgibacillus albus as Aquibacillus albus comb. Nov. Int J Syst Evol Microbiol 64(Pt_11):3616–3623. https://doi.org/10.1099/ijs.0.065375-0. (PMID: 10.1099/ijs.0.065375-025062698)
Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002) Proposal of Cobetia marina gen. Nov., comb. Nov., within the Family Halomonadaceae, to include the Species Halomonas marina. Syst Appl Microbiol 25(2):207–211. https://doi.org/10.1078/0723-2020-00113. (PMID: 10.1078/0723-2020-0011312353874)
Basha PA (2021) Chapter 25—oil degrading lipases and their role in environmental pollution. In: Viswanath B (ed) Recent developments in applied microbiology and biochemistry. Academic Press, London, pp 269–277. https://doi.org/10.1016/B978-0-12-821406-0.00025-4. (PMID: 10.1016/B978-0-12-821406-0.00025-4)
Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms 1. J Bacteriol 41(5):653–673. (PMID: 10.1128/jb.41.5.653-673.194116560430374727)
Castaño-Uribe C, Riedel S, Gómez F, Montes-Veira S (2003) Río grande de la Magdalena. Banco de Occidente. http://imeditores.com/banocc/rio/presentacion.htm . Accessed 20 Dec 2021.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642. https://doi.org/10.1093/nar/gkt1244. (PMID: 10.1093/nar/gkt124424288368)
Cupit C, Lomstein BA, Kjeldsen KU (2019) Contrasting community composition of endospores and vegetative Firmicutes in a marine sediment suggests both endogenous and exogenous sources of endospore accumulation. Environ Microbiol Rep 11(3):352–360. https://doi.org/10.1111/1758-2229.12679. (PMID: 10.1111/1758-2229.1267930043505)
da Silva MAC, Cavalett A, Spinner A, Rosa DC, Jasper RB, Quecine MC, Bonatelli ML, Pizzirani-Kleiner A, Corção G, Lima AOS (2013) Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus 2(1):127. https://doi.org/10.1186/2193-1801-2-127. (PMID: 10.1186/2193-1801-2-127235653573616218)
Danovaro R, Snelgrove PVR, Tyler P (2014) Challenging the paradigms of deep-sea ecology. Trends Ecol Evol 29(8):465–475. https://doi.org/10.1016/j.tree.2014.06.002. (PMID: 10.1016/j.tree.2014.06.00225001598)
Drakontis CE, Amin S (2020) Biosurfactants: Formulations, properties, and applications. Curr Opin Colloid Interface Sci 48:77–90. https://doi.org/10.1016/j.cocis.2020.03.013. (PMID: 10.1016/j.cocis.2020.03.013)
Eisenberg GM (1939) A Nile blue culture medium for lipolytic microorganisms. Stain Technol 14(2):63–67. https://doi.org/10.3109/10520293909110300. (PMID: 10.3109/10520293909110300)
Ettoumi B, Bouhajja E, Borin S, Daffonchio D, Boudabous A, Cherif A (2010) Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol 33(4):222–231. https://doi.org/10.1016/j.syapm.2010.02.005. (PMID: 10.1016/j.syapm.2010.02.00520413241)
Franco NR, Giraldo MÁ, López-Alvarez D, Gallo-Franco JJ, Dueñas LF, Puentes V, Castillo A (2021) Bacterial composition and diversity in deep-sea sediments from the Southern Colombian Caribbean Sea. Diversity 13(1):10. https://doi.org/10.3390/d13010010. (PMID: 10.3390/d13010010)
Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66(2):181–196. https://doi.org/10.1111/j.1574-6941.2008.00566.x. (PMID: 10.1111/j.1574-6941.2008.00566.x18752622)
Fuhrman JA, Hagström Å (2008) Bacterial and archaeal community structure and its patterns. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Hoboken, pp 45–90. https://doi.org/10.1002/9780470281840.ch3. (PMID: 10.1002/9780470281840.ch3)
Glaeser SP, Dott W, Busse H-J, Kämpfer P (2013) Fictibacillus phosphorivorans gen. Nov., sp. Nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int J Syst Evol Microbiol 63(Pt_8):2934–2944. https://doi.org/10.1099/ijs.0.049171-0. (PMID: 10.1099/ijs.0.049171-023355698)
Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J, Westram R, Ludwig W (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198. (PMID: 10.1016/j.jbiotec.2017.06.119828648396)
Gupta RS (2000) The phylogeny of proteobacteria: Relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24(4):367–402. https://doi.org/10.1016/S0168-6445(00)00031-0. (PMID: 10.1016/S0168-6445(00)00031-010978543)
Hernández-Ávila I (2014) Patterns of deep-water coral diversity in the caribbean basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions. PLoS ONE 9(3):e92834. https://doi.org/10.1371/journal.pone.0092834. (PMID: 10.1371/journal.pone.0092834246711563966830)
Ibacache-Quiroga C, Ojeda J, Espinoza-Vergara G, Olivero P, Cuellar M, Dinamarca MA (2013) The hydrocarbon-degrading marine bacterium Cobetia sp. Strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking. Microb Biotechnol 6(4):394–405. https://doi.org/10.1111/1751-7915.12016. (PMID: 10.1111/1751-7915.12016232798853917474)
Ivanova EP, Romanenko LA, Chun J, Matte MH, Matte GR, Mikhailov VV, Svetashev VI, Huq A, Maugel T, Colwell RR (2000) Idiomarina gen. Nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. Nov. and Idiomarina zobellii sp. Nov. Int J Syst Evol Microbiol 50(2):901–907. https://doi.org/10.1099/00207713-50-2-901. (PMID: 10.1099/00207713-50-2-90110758902)
Jamieson RE, Heywood JL, Rogers AD, Billett DSM, Pearce DA (2013) Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet Islands, Southern Ocean. Deep Sea Res Part I 75:67–77. https://doi.org/10.1016/j.dsr.2012.12.012. (PMID: 10.1016/j.dsr.2012.12.012)
Jose PA, Maharshi A, Jha B (2021) Actinobacteria in natural products research: progress and prospects. Microbiol Res 246:126708. https://doi.org/10.1016/j.micres.2021.126708. (PMID: 10.1016/j.micres.2021.12670833529791)
Kai W, Peisheng Y, Rui M, Wenwen J, Zongze S (2017) Diversity of culturable bacteria in deep-sea water from the South Atlantic Ocean. Bioengineered 8(5):572–584. https://doi.org/10.1080/21655979.2017.1284711. (PMID: 10.1080/21655979.2017.1284711281407585639861)
Kim S-K (2014) Handbook of anticancer drugs from marine origin. Springer, Berlin.
Krishnamurthi S, Bhattacharya A, Mayilraj S, Saha P, Schumann P, Chakrabarti TY (2009) Description of Paenisporosarcina quisquiliarum gen. Nov., sp. Nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. Nov. Int J Syst Evol Microbiol 59(6):1364–1370. https://doi.org/10.1099/ijs.0.65130-0. (PMID: 10.1099/ijs.0.65130-019502317)
Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175.
Li L, Kato C, Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8(5):659–677. https://doi.org/10.1023/A:1008848203739. (PMID: 10.1023/A:1008848203739)
Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. Nov., sp. Nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205(2):291–297. https://doi.org/10.1111/j.1574-6968.2001.tb10963.x. (PMID: 10.1111/j.1574-6968.2001.tb10963.x11750818)
Miller M, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129.
Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the caribbean: regional estimates and distribution patterns. PLoS ONE 5(8):e11916. https://doi.org/10.1371/journal.pone.0011916. (PMID: 10.1371/journal.pone.0011916206898562914069)
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418:126253. https://doi.org/10.1016/j.jhazmat.2021.126253. (PMID: 10.1016/j.jhazmat.2021.12625334119972)
Mita L, Sica V, Guida M, Nicolucci C, Grimaldi T, Caputo L, Bianco M, Rossi S, Bencivenga U, Eldin MSM, Tufano MA, Mita DG, Diano N (2010) Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors. J Mol Catal B Enzym 62(2):133–141. https://doi.org/10.1016/j.molcatb.2009.09.016. (PMID: 10.1016/j.molcatb.2009.09.016)
Mondol MAM, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11(8):2846–2872. https://doi.org/10.3390/md11082846. (PMID: 10.3390/md11082846239418233766869)
Mysara M, Vandamme P, Props R, Kerckhof F-M, Leys N, Boon N, Raes J, Monsieurs P (2017) Reconciliation between operational taxonomic units and species boundaries. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix029. (PMID: 10.1093/femsec/fix029283342185812548)
Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365. https://doi.org/10.1146/annurev.mi.40.100186.002005. (PMID: 10.1146/annurev.mi.40.100186.0020052430518)
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the Dark Ocean above, at, and below the Seafloor. Microbiol Mol Biol Rev 75(2):361–422. https://doi.org/10.1128/MMBR.00039-10. (PMID: 10.1128/MMBR.00039-10216464333122624)
Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology. Springer, Boston, pp 1–55. https://doi.org/10.1007/978-1-4757-0611-6_1. (PMID: 10.1007/978-1-4757-0611-6_1)
Patnala HS, Kabilan U, Gopalakrishnan L, Rao RMD, Kumar DS (2016) Marine fungal and bacterial isolates for lipase production: a comparative study. Adv Food Nutr Res 78:71–94. https://doi.org/10.1016/bs.afnr.2016.06.001. (PMID: 10.1016/bs.afnr.2016.06.00127452166)
Patowary R, Patowary K, Kalita MC, Deka S (2018) Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. Int Biodeterior Biodegrad 129:50–60. https://doi.org/10.1016/j.ibiod.2018.01.004. (PMID: 10.1016/j.ibiod.2018.01.004)
Pruesse E, Peplies J, Glöckner FO (2012) SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823–1829. https://doi.org/10.1093/bioinformatics/bts252. (PMID: 10.1093/bioinformatics/bts252225563683389763)
Qin S, Li J, Zhang Y-Q, Zhu W-Y, Zhao G-Z, Xu L-H, Li W-J (2009) Plantactinospora mayteni gen. Nov., sp. Nov., a member of the family micromonosporaceae. Int J Syst Evol Microbiol 59(10):2527–2533. https://doi.org/10.1099/ijs.0.010793-0. (PMID: 10.1099/ijs.0.010793-019622648)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219. (PMID: 10.1093/nar/gks121923193283)
Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759. (PMID: 10.1146/annurev.micro.57.030502.09075914527284)
Restrepo JC, Schrottke K, Orejarena A, Ortiz J, Higgins A, Otero L, Marriaga L (2015) Transporte de sedimentos y ajustes morfológicos en un delta tropical de alta descarga (Río Magdalena, Colombia): Evidencias de un periodo de cambio e intervención antrópica (1990–2010). XVI, 72. http://www.colacmar-senalmar2015.com/es/pdf/LibroMemorias_Senalmar_Final.pdf . Accessed 20 Dec 2021.
Schloss PD (2020) Reintroducing mothur: 10 years later. Appl Environ Microbiol 86(2):e02343-e2419. https://doi.org/10.1128/AEM.02343-19. (PMID: 10.1128/AEM.02343-19317046786952234)
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09. (PMID: 10.1128/AEM.01541-09198014642786419)
Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. Nov., comb. Nov. Int J Syst Evol Microbiol 51(3):1007–1010. https://doi.org/10.1099/00207713-51-3-1007. (PMID: 10.1099/00207713-51-3-100711411667)
Seiler H, Wenning M, Scherer S (2013) Domibacillus robiginosus gen. Nov., sp. Nov., isolated from a pharmaceutical clean room. Int J Syst Evol Microbiol 63(Pt 6):2054–2061. https://doi.org/10.1099/ijs.0.044396-0. (PMID: 10.1099/ijs.0.044396-023064349)
Sivaperumal P, Kamala K, Rajaram R (2017) Bioremediation of industrial waste through enzyme producing marine microorganisms. In: Kim S-K, Toldrá F (eds) Advances in food and nutrition research, vol 80, 1st edn. Elsevier, Amsterdam, p 216.
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033. (PMID: 10.1093/bioinformatics/btu033)
Tanasupawat S, Namwong S, Kudo T, Itoh T (2007) Piscibacillus salipiscarius gen. Nov., sp. Nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 57(7):1413–1417. https://doi.org/10.1099/ijs.0.64945-0. (PMID: 10.1099/ijs.0.64945-017625167)
Toribio AL, Alako B, Amid C, Cerdeño-Tarrága A, Clarke L, Cleland I, Fairley S, Gibson R, Goodgame N, Hoopen PT, Jayathilaka S, Kay S, Leinonen R, Liu X, Martínez-Villacorta J, Pakseresht N, Rajan J, Reddy K, Rosello M, Silvester N, Smirnov D, Vaughan D, Zalunin V, Cochrane G (2017) European nucleotide archive in 2016. Nucleic Acids Res 45:D32–D36. https://doi.org/10.1093/nar/gkw1106. (PMID: 10.1093/nar/gkw110627899630)
Velásquez AV, Quintero M, Jiménez EY, Blandón LM, Gómez J (2018) Microorganismos marinos extremófilos con potencial en bioprospección. Revista de la Facultad de Ciencias 7(2):9–43. https://doi.org/10.15446/rev.fac.cienc.v7n2.67360. (PMID: 10.15446/rev.fac.cienc.v7n2.67360)
Velásquez-Arias JA (2017) Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental 8(1):151–167. https://doi.org/10.22490/21456453.1846. (PMID: 10.22490/21456453.1846)
Velmurugan N, Kalpana D, Cho J-Y, Lee G-H, Park S-H, Lee Y-S (2011) Phylogenetic analysis of culturable marine bacteria in sediments from South Korean Yellow Sea. Microbiology 80(2):261. https://doi.org/10.1134/S0026261711010188. (PMID: 10.1134/S0026261711010188)
Vides M, Alonso D (2016) Levantamiento de información ambiental de sistemas marinos y costeros sobre el Caribe colombiano (p. 193) [Informe técnico final]. ANH-INVEMAR. http://cinto.invemar.org.co/alfresco/d/d/workspace/SpacesStore/146265f4-56d7-43eb-a433-7d6cad99cc1c/LEVANTAMIENTO%20DE%20INFORMACI%C3%93N%20AMBIENTAL%20DE%20SISTEMAS%20MARINOS%20Y%20COSTEROS%20SOBRE%20EL%20CARIBE%20COLOMBIANO?ticket=TICKET_23ccd90907f4a85a6d990d14c13b6b21079a8269 . Accessed 20 Dec 2021.
Vides MM, Alonso D (2018) Estudio técnico ambiental de línea base en el área de evaluación COL10, extremo norte del Caribe colombiano (Técnico final Convenio 340-18; p 416). ANH-INVEMAR. http://cinto.invemar.org.co/alfresco/d/d/workspace/version2Store/505a55e9-2ec5-42ab-ac55-a8ff1fa561d9/Estudio%20T%C3%A9cnico%20Ambiental%20de%20L%C3%ADnea%20Base%20en%20el%20%C3%81rea%20de%20Evaluaci%C3%B3n%20Col%2010,%20Extremo%20Norte%20del%20Caribe%20Colombiano%20-%20ANH%20COL10?ticket=TICKET_23ccd90907f4a85a6d990d14c13b6b21079a8269 . Accessed 20 Dec 2021.
Vides M, Santos-Acevedo M, Alonso D (2017) Estudio técnico ambiental de línea base en el área de evaluación COL 3 sobre la cuenca sedimentaria del Caribe colombiano. (Convenio 139-17. ANH - INVEMAR, p 376) [Informe técnico final]. Instituto de Investigaciones Marinas y Costeras - INVEMAR. http://cinto.invemar.org.co/alfresco/d/d/workspace/version2Store/440af9ae-a167-449b-a768-b2a8735bd311/PRY_BEM_ANH_13_17_ITF.pdf?ticket=TICKET_23ccd90907f4a85a6d990d14c13b6b21079a8269 . Accessed 20 Dec 2021.
Vreeland RH, Litchfield CD, Martin EL, Elliot EY (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 30(2):485–495. https://doi.org/10.1099/00207713-30-2-485. (PMID: 10.1099/00207713-30-2-485)
Walter V, Syldatk C, Hausmann R (2013) Screening concepts for the isolation of biosurfactant producing microorganisms. Landes Biosci. https://www.ncbi.nlm.nih.gov/books/NBK6189/.
Welz P, Swanepoel G, Weels S, Le Roes-Hill M (2021) Wastewater from the edible oil industry as a potential source of lipase- and surfactant-producing actinobacteria. Microorganisms 9(9):1987. https://doi.org/10.3390/microorganisms9091987. (PMID: 10.3390/microorganisms9091987345768828465459)
Zhang Z, Wu Y, Zhang X-H (2018) Cultivation of microbes from the deep-sea environments. Deep Sea Res Part II 155:34–43. https://doi.org/10.1016/j.dsr2.2017.07.008. (PMID: 10.1016/j.dsr2.2017.07.008)
Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Martiny JBH, Sogin M, Boetius A, Ramette A (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6(9):e24570. https://doi.org/10.1371/journal.pone.0024570. (PMID: 10.1371/journal.pone.0024570219317603169623)
Zobell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73(4):563–568. (PMID: 10.1128/jb.73.4.563-568.195713428691314618)
Zouboulis AI, Moussas PA, Psaltou SG (2019) Groundwater and soil pollution: bioremediation. In: Nriagu J (ed) Encyclopedia of environmental health, 2nd edn. Elsevier, Oxford, pp 369–381. (PMID: 10.1016/B978-0-12-409548-9.11246-1) - Contributed Indexing: Keywords: Bioremediation; Colombian Caribbean; Deep-sea sediments; Diversity of cultivable bacteria
- الرقم المعرف: 0 (DNA, Bacterial)
0 (RNA, Ribosomal, 16S) - الموضوع: Date Created: 20220123 Date Completed: 20220301 Latest Revision: 20221208
- الموضوع: 20250114
- الرقم المعرف: 10.1007/s10482-021-01706-4
- الرقم المعرف: 35066712
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.