Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

High-throughput glycosylation analysis of intact monoclonal antibodies by mass spectrometry coupled with capillary electrophoresis and liquid chromatography.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101088554 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9314 (Electronic) Linking ISSN: 16159306 NLM ISO Abbreviation: J Sep Sci Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Weinheim, Germany : Wiley-VCH, c2001-
    • الموضوع:
    • نبذة مختصرة :
      The analysis of monoclonal antibodies glycosylation is a crucial quality control attribute of biopharmaceutical drugs. High throughput screening approaches for antibody glycoform analysis are required in various stages of process optimization. Here, we present high throughput screening suitable mass spectrometry-based workflows for the analysis of intact antibody glycosylation out of cell supernatants. Capillary electrophoresis and liquid chromatography were coupled with quadrupole time-of-flight mass spectrometry or Orbitrap mass spectrometry. Both separation methods offer fast separation (10-15 min) and the capability to prevent the separated cell supernatant matrix to enter the mass spectrometry by post-separation valving. Both mass spectrometry instruments provide comparable results and both are sufficient to determine the glycosylation pattern of the five major glycoforms of the measured antibodies. However, the Orbitrap yields higher sensitivity of 25 μg/mL (CE-nanoCEasy-Orbitrap mass spectrometry) and 5 μg/mL (liquid chromatography-Orbitrap mass spectrometry). Data processing was optimized for a faster processing and easier detection of low abundant glycoforms based on averaged charge-deconvoluted mass spectra. This approach combines a non-target glycoform analysis while yielding the same glycosylation pattern as the traditional approach based on extracted ion traces. The presented methods enable the high throughput screening of the glycosylation pattern of antibodies down to low μg/mL-range out of cell supernatant without any sample preparation.
      (© 2022 The Authors. Journal of Separation Science published by Wiley-VCH GmbH.)
    • References:
      Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol. 2009;20:700-7.
      Pacis E, Yu M, Autsen J, Bayer R, Li F. Effects of cell culture conditions on antibody n-linked glycosylation - what affects high mannose 5 glycoform. Biotechnol Bioeng. 2011;108:2348-58.
      Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015;25:1325-34.
      Kiyoshi M, Tsumoto K, Ishii-Watabe A, Caaveiro JMM. Glycosylation of IgG-fc: a molecular perspective. Int Immunol. 2017;29:311-7.
      Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M. IgG glycosylation analysis. Proteomics 2009;9:882-913.
      Bunz S-C, Rapp E, Neusüss C, Capillary electrophoresis/mass spectrometry of apts-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem. 2013;85:10218-24.
      Wang T, Hoi KM, Stöckmann H, Wan C, Sim LC, Shi Jie Tay NHBK, Poo CH, Woen S, Yang Y, Zhang P, Rudd PM. LC/MS-based intact IgG and released glycan analysis for bioprocessing applications. Biotechnol J. 2018;13:1700185.
      Said N, Gahoual R, Kuhn L, Beck A, François Y-N, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta. 2016;918:50-9.
      Henninot A, Terrier A, Charton J, Urbain R, Fontayne A, Deprez B, Beghyn T. Characterization of monoclonal antibodies by a fast and easy liquid chromatography-mass spectrometry time-of-flight analysis on culture supernatant. Anal Biochem. 2015;491:52-4.
      Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François Y-N. Monoclonal antibody n-glycosylation profiling using capillary electrophoresis - mass spectrometry: assessment and method validation. Talanta 2018;178:530-7.
      Dong J, Migliore N, Mehrman SJ, Cunningham J, Lewis MJ, Hu P, High-throughput, automated protein a purification platform with multiattribute LC-MS analysis for advanced cell culture process monitoring. Anal Chem. 2016;88:8673-9.
      Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci. 2020;43:313-36.
      Beck A, Wagner-Rousset E, Ayoub D, van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85:715-36.
      Gadgil HS, Pipes GD, Dillon TM, Treuheit MJ, Bondarenko PV. Improving mass accuracy of high performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of intact antibodies. J Am Soc Mass Spectrom. 2006;17:867-72.
      Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev. 2007;26:370-88.
      Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020;34:e4633.
      Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci. 2021;44:211-46.
      Taylor PJ. Matrix effects: The achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38:328-34.
      Regl C, Wohlschlager T, Esser-Skala W, Wagner I, Samonig M, Holzmann J, Huber CG. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. MAbs. 2019;11:569-82.
      Chen B, Lin Z, Alpert AJ, Fu C, Zhang Q, Pritts WA, Ge Y. Online hydrophobic interaction chromatography-mass spectrometry for the analysis of intact monoclonal antibodies. Anal Chem. 2018;90:7135-8.
      Chen C-H, Feng H, Guo R, Li P, Laserna AKC, Ji Y, Ng BH, Li SFY, Khan SH, Paulus A, Chen S-M, Karger AE, Wenz M, Ferrer DL, Huhmer AF, Krupke A. Intact nist monoclonal antibody characterization-proteoforms, glycoforms-using CE-MS and CE-LIF. Cogent Chem. 2018;4:1480455.
      Kilpatrick LE, Kilpatrick EL. Optimizing high-resolution mass spectrometry for the identification of low-abundance post-translational modifications of intact proteins. J Proteome Res. 2017;16:3255-65.
      Duivelshof BL, Beck A, Guillarme D, D'Atri V. Bispecific antibody characterization by a combination of intact and site-specific/chain-specific LC/MS techniques. Talanta 2022;236:122836.
      Sawyer WS, Srikumar N, Carver J, Chu PY, Shen A, Xu A, Williams AJ, Spiess C, Wu C, Liu Y, Tran JC. High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry. Proc Natl Acad Sci USA. 2020;117:9851-6.
      Zhu W, Li M, Zhang J. Integrating intact mass analysis and middle-down mass spectrometry approaches to effectively characterize trastuzumab and adalimumab structural heterogeneity. J Proteome Res. 2021;20:270-8.
      Höcker O, Montealegre C, Neusüß C. Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem. 2018;410:5265-75.
      Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis 2019;40:79-112.
      Schlecht J, Stolz A, Hofmann A, Gerstung L, Neusüß C. Nanoceasy: an easy, flexible, and robust nanoflow sheath liquid capillary electrophoresis-mass spectrometry interface based on 3d printed parts. Anal Chem. 2021;93:14593-8.
      Höcker O, Bader T, Schmidt TC, Schulz W, Neusüß C. Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal Bioanal Chem. 4857-65, 2020.
      Gstöttner C;Nicolardi S:Haberger M, Reusch D, Wuhrer M, Domínguez-Vega E. Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS. Anal Chim Acta. 2020;1134:18-27.
      Giorgetti J, Beck A, Leize-Wagner E, François Y-N. Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis - mass spectrometry. J Pharm Biomed Anal. 2020;182:113107.
      Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal Chem. 2013;85:5288-96.
      Gahoual R, Busnel J-M, Beck A, François Y-N, Leize-Wagner E. Full antibody primary structure and microvariant characterization in a single injection using transient isotachophoresis and sheathless capillary electrophoresis-tandem mass spectrometry. Anal Chem. 2014;86:9074-81.
      Agilent. Improved CE/MS sensitivity by operating the triple-tube coaxial sheath-flow sprayer without appling nebulizing gas. 2018. https://www.agilent.com/cs/library/technicaloverviews/public/5991-9073EN_CEMS_Sensitivity_TechOverview.pdf Accessed December 24, 2021.
      Gustavsson SÅ, Samskog J, Markides KE, Långström B. Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-pairing reagents. J Chromatogr A. 2001;937:41-7.
      Fekete S, Rudaz S, Veuthey J-L, Guillarme D. Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed-phase stationary phases. J Sep Sci. 2012;35:3113-23.
      Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, Zhou J, Tao L, Leone AM. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. RCM. 2019;33:31-7.
    • Grant Information:
      FKZ 13FH635IB6 Bundesministerium für Bildung und Forschung
    • Contributed Indexing:
      Keywords: antibodies; glycosylation; high throughput screening; mass spectrometry
    • الرقم المعرف:
      0 (Antibodies, Monoclonal)
    • الموضوع:
      Date Created: 20220119 Date Completed: 20220629 Latest Revision: 20220629
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1002/jssc.202100865
    • الرقم المعرف:
      35044720