References: Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol. 2009;20:700-7.
Pacis E, Yu M, Autsen J, Bayer R, Li F. Effects of cell culture conditions on antibody n-linked glycosylation - what affects high mannose 5 glycoform. Biotechnol Bioeng. 2011;108:2348-58.
Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015;25:1325-34.
Kiyoshi M, Tsumoto K, Ishii-Watabe A, Caaveiro JMM. Glycosylation of IgG-fc: a molecular perspective. Int Immunol. 2017;29:311-7.
Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M. IgG glycosylation analysis. Proteomics 2009;9:882-913.
Bunz S-C, Rapp E, Neusüss C, Capillary electrophoresis/mass spectrometry of apts-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem. 2013;85:10218-24.
Wang T, Hoi KM, Stöckmann H, Wan C, Sim LC, Shi Jie Tay NHBK, Poo CH, Woen S, Yang Y, Zhang P, Rudd PM. LC/MS-based intact IgG and released glycan analysis for bioprocessing applications. Biotechnol J. 2018;13:1700185.
Said N, Gahoual R, Kuhn L, Beck A, François Y-N, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta. 2016;918:50-9.
Henninot A, Terrier A, Charton J, Urbain R, Fontayne A, Deprez B, Beghyn T. Characterization of monoclonal antibodies by a fast and easy liquid chromatography-mass spectrometry time-of-flight analysis on culture supernatant. Anal Biochem. 2015;491:52-4.
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François Y-N. Monoclonal antibody n-glycosylation profiling using capillary electrophoresis - mass spectrometry: assessment and method validation. Talanta 2018;178:530-7.
Dong J, Migliore N, Mehrman SJ, Cunningham J, Lewis MJ, Hu P, High-throughput, automated protein a purification platform with multiattribute LC-MS analysis for advanced cell culture process monitoring. Anal Chem. 2016;88:8673-9.
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci. 2020;43:313-36.
Beck A, Wagner-Rousset E, Ayoub D, van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85:715-36.
Gadgil HS, Pipes GD, Dillon TM, Treuheit MJ, Bondarenko PV. Improving mass accuracy of high performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of intact antibodies. J Am Soc Mass Spectrom. 2006;17:867-72.
Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev. 2007;26:370-88.
Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020;34:e4633.
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci. 2021;44:211-46.
Taylor PJ. Matrix effects: The achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem. 2005;38:328-34.
Regl C, Wohlschlager T, Esser-Skala W, Wagner I, Samonig M, Holzmann J, Huber CG. Dilute-and-shoot analysis of therapeutic monoclonal antibody variants in fermentation broth: a method capability study. MAbs. 2019;11:569-82.
Chen B, Lin Z, Alpert AJ, Fu C, Zhang Q, Pritts WA, Ge Y. Online hydrophobic interaction chromatography-mass spectrometry for the analysis of intact monoclonal antibodies. Anal Chem. 2018;90:7135-8.
Chen C-H, Feng H, Guo R, Li P, Laserna AKC, Ji Y, Ng BH, Li SFY, Khan SH, Paulus A, Chen S-M, Karger AE, Wenz M, Ferrer DL, Huhmer AF, Krupke A. Intact nist monoclonal antibody characterization-proteoforms, glycoforms-using CE-MS and CE-LIF. Cogent Chem. 2018;4:1480455.
Kilpatrick LE, Kilpatrick EL. Optimizing high-resolution mass spectrometry for the identification of low-abundance post-translational modifications of intact proteins. J Proteome Res. 2017;16:3255-65.
Duivelshof BL, Beck A, Guillarme D, D'Atri V. Bispecific antibody characterization by a combination of intact and site-specific/chain-specific LC/MS techniques. Talanta 2022;236:122836.
Sawyer WS, Srikumar N, Carver J, Chu PY, Shen A, Xu A, Williams AJ, Spiess C, Wu C, Liu Y, Tran JC. High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry. Proc Natl Acad Sci USA. 2020;117:9851-6.
Zhu W, Li M, Zhang J. Integrating intact mass analysis and middle-down mass spectrometry approaches to effectively characterize trastuzumab and adalimumab structural heterogeneity. J Proteome Res. 2021;20:270-8.
Höcker O, Montealegre C, Neusüß C. Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem. 2018;410:5265-75.
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis 2019;40:79-112.
Schlecht J, Stolz A, Hofmann A, Gerstung L, Neusüß C. Nanoceasy: an easy, flexible, and robust nanoflow sheath liquid capillary electrophoresis-mass spectrometry interface based on 3d printed parts. Anal Chem. 2021;93:14593-8.
Höcker O, Bader T, Schmidt TC, Schulz W, Neusüß C. Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal Bioanal Chem. 4857-65, 2020.
Gstöttner C;Nicolardi S:Haberger M, Reusch D, Wuhrer M, Domínguez-Vega E. Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS. Anal Chim Acta. 2020;1134:18-27.
Giorgetti J, Beck A, Leize-Wagner E, François Y-N. Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis - mass spectrometry. J Pharm Biomed Anal. 2020;182:113107.
Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal Chem. 2013;85:5288-96.
Gahoual R, Busnel J-M, Beck A, François Y-N, Leize-Wagner E. Full antibody primary structure and microvariant characterization in a single injection using transient isotachophoresis and sheathless capillary electrophoresis-tandem mass spectrometry. Anal Chem. 2014;86:9074-81.
Agilent. Improved CE/MS sensitivity by operating the triple-tube coaxial sheath-flow sprayer without appling nebulizing gas. 2018. https://www.agilent.com/cs/library/technicaloverviews/public/5991-9073EN_CEMS_Sensitivity_TechOverview.pdf Accessed December 24, 2021.
Gustavsson SÅ, Samskog J, Markides KE, Långström B. Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-pairing reagents. J Chromatogr A. 2001;937:41-7.
Fekete S, Rudaz S, Veuthey J-L, Guillarme D. Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed-phase stationary phases. J Sep Sci. 2012;35:3113-23.
Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, Zhou J, Tao L, Leone AM. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. RCM. 2019;33:31-7.
No Comments.