Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Perspectives of future lung toxicology studies using human pluripotent stem cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417615 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0738 (Electronic) Linking ISSN: 03405761 NLM ISO Abbreviation: Arch Toxicol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      The absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.
      (© 2021. The Author(s).)
    • References:
      Akkus Z, Cai J, Boonrod A et al (2019) A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol 16:1318–1328. https://doi.org/10.1016/j.jacr.2019.06.004. (PMID: 10.1016/j.jacr.2019.06.00431492410)
      Alanis DM, Chang DR, Akiyama H et al (2014) Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun 51(5):1–15. https://doi.org/10.1038/ncomms4923. (PMID: 10.1038/ncomms4923)
      Alysandratos K-D, Russo SJ, Petcherski A et al (2021a) Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. SSRN Electron J 36:109636. https://doi.org/10.2139/ssrn.3757687. (PMID: 10.2139/ssrn.3757687)
      Alysandratos KD, Herriges MJ, Kotton DN (2021b) Epithelial stem and progenitor cells in lung repair and regeneration. Annu Rev Physiol 83:529–550. (PMID: 10.1146/annurev-physiol-041520-092904)
      Ando H, Yoshinaga T, Yamamoto W et al (2017) A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 84:111–127. https://doi.org/10.1016/j.vascn.2016.12.003. (PMID: 10.1016/j.vascn.2016.12.00327956204)
      Barkauskas CE, Chung M-I, Fioret B et al (2017) Lung organoids: current uses and future promise. Development 144:986. https://doi.org/10.1242/DEV.140103. (PMID: 10.1242/DEV.140103282928455358104)
      Bedrossian CWM (1997) Amiodarone pulmonary toxicity: cytopathology, ultrastructure, and immunocytochemistry. Ann Diagn Pathol 1:47–56. https://doi.org/10.1016/S1092-9134(97)80008-1. (PMID: 10.1016/S1092-9134(97)80008-19869825)
      Benam KH, Villenave R, Lucchesi C et al (2016a) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157. https://doi.org/10.1038/nmeth.3697. (PMID: 10.1038/nmeth.369726689262)
      Benam KH, Novak R, Nawroth J et al (2016b) Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell Syst 3:456–466.e4. https://doi.org/10.1016/j.cels.2016.10.003. (PMID: 10.1016/j.cels.2016.10.00327894999)
      Berkers G, van Mourik P, Vonk AM et al (2019) Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep 26:1701-1708.e3. https://doi.org/10.1016/j.celrep.2019.01.068. (PMID: 10.1016/j.celrep.2019.01.06830759382)
      Bhise NS, Manoharan V, Massa S et al (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101. https://doi.org/10.1088/1758-5090/8/1/014101. (PMID: 10.1088/1758-5090/8/1/01410126756674)
      Blinova K, Dang Q, Millard D et al (2018) International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep 24:3582–3592. https://doi.org/10.1016/J.CELREP.2018.08.079. (PMID: 10.1016/J.CELREP.2018.08.079302572176226030)
      Bluhmki T, Traub S, Müller A-K et al (2021) Functional human iPSC-derived alveolar-like cells cultured in a miniaturized 96-Transwell air–liquid interface model. Sci Rep 11:1–19. https://doi.org/10.1038/s41598-021-96565-4. (PMID: 10.1038/s41598-021-96565-4)
      Boretto M, Maenhoudt N, Luo X et al (2019) Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 21:1041–1051. https://doi.org/10.1038/s41556-019-0360-z. (PMID: 10.1038/s41556-019-0360-z31371824)
      Borok Z, Danto SI, Lubman RL et al (1998) Modulation of T1α expression with alveolar epithelial cell phenotype in vitro. Am J Physiol Lung Cell Mol Physiol 275:155–164. https://doi.org/10.1152/ajplung.1998.275.1.l155. (PMID: 10.1152/ajplung.1998.275.1.l155)
      Broutier L, Mastrogiovanni G, Verstegen MMA et al (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23:1424–1435. https://doi.org/10.1038/nm.4438. (PMID: 10.1038/nm.4438291311605722201)
      Burridge PW, Li YF, Matsa E et al (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547–556. https://doi.org/10.1038/nm.4087. (PMID: 10.1038/nm.4087270895145086256)
      Camus P, Fanton A, Bonniaud P et al (2004) Interstitial lung disease induced by drugs and radiation. Respiration 71:301–326. (PMID: 10.1159/000079633)
      Chen F, Cao Y, Qian J et al (2010) A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 120:2040–2048. https://doi.org/10.1172/JCI40253. (PMID: 10.1172/JCI40253204848172877937)
      Chen YW, Huang SX, De Carvalho ALRT et al (2017) A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 19:542–549. https://doi.org/10.1038/ncb3510. (PMID: 10.1038/ncb3510284369655777163)
      Choi J, Park JE, Tsagkogeorga G et al (2020) Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27:366-382.e7. https://doi.org/10.1016/j.stem.2020.06.020. (PMID: 10.1016/j.stem.2020.06.020327503167487779)
      Cooper JAD, White DA, Matthay RA (1986a) Drug-induced pulmonary disease. Part 2: noncytotoxic drugs. Am Rev Respir Dis 133:488–505. (PMID: 2869727)
      Cooper JAD, White DA, Matthay RA (1986b) Drug-induced pulmonary disease. Part 1: cytotoxic drugs. Am Rev Respir Dis 133:321–340. (PMID: 3511808)
      D’Amour KA, Agulnick AD, Eliazer S et al (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. https://doi.org/10.1038/nbt1163. (PMID: 10.1038/nbt116316258519)
      de Carvalho ALRT, Strikoudis A, Liu HY et al (2019) Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Dev. https://doi.org/10.1242/dev.171652. (PMID: 10.1242/dev.171652)
      Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. The Lancet 379:1341–1351. (PMID: 10.1016/S0140-6736(11)60968-9)
      DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012. (PMID: 10.1016/j.jhealeco.2016.01.01226928437)
      Doherty KR, Wappel RL, Talbert DR et al (2013) Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol 272:245–255. https://doi.org/10.1016/j.taap.2013.04.027. (PMID: 10.1016/j.taap.2013.04.02723707608)
      Duval K, Grover H, Han LH et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277. (PMID: 10.1152/physiol.00036.2016)
      Dye BR, Hill DR, Ferguson MA et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. Elife 2015:1–25. https://doi.org/10.7554/eLife.05098. (PMID: 10.7554/eLife.05098)
      Firth AL, Dargitz CT, Qualls SJ et al (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111:E1723. https://doi.org/10.1073/pnas.1403470111. (PMID: 10.1073/pnas.1403470111247068524035971)
      Foster CD, Varghese LS, Skalina RB et al (2007) In vitro transdifferentiation of human fetal type ii cells toward a type I–like cell. Pediatr Res 614(61):404–409. https://doi.org/10.1203/pdr.0b013e3180332c6d. (PMID: 10.1203/pdr.0b013e3180332c6d)
      Fulcher ML, Randell SH (2012) Human nasal and tracheo-bronchial respiratory epithelial cell culture. Methods Mol Biol 945:109–121. https://doi.org/10.1007/978-1-62703-125-7_8. (PMID: 10.1007/978-1-62703-125-7_8)
      Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028. https://doi.org/10.1056/nejmoa1501824. (PMID: 10.1056/nejmoa150182425891174)
      Ghaedi M, Calle EA, Mendez JJ et al (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123:4950–4962. https://doi.org/10.1172/JCI68793. (PMID: 10.1172/JCI68793241351423809786)
      Gkatzis K, Taghizadeh S, Huh D et al (2018) Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J 52.
      Godoy P, Hewitt NJ, Albrecht U et al (2014) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530. (PMID: 10.1007/s00204-013-1078-5)
      Gonzales LW, Guttentag SH, Wade KC et al (2002) Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol 283:940–951. https://doi.org/10.1152/ajplung.00127.2002. (PMID: 10.1152/ajplung.00127.2002)
      Gotoh S, Ito I, Nagasaki T et al (2014) Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 3:394–403. https://doi.org/10.1016/j.stemcr.2014.07.005. (PMID: 10.1016/j.stemcr.2014.07.005)
      Green MD, Chen A, Nostro MC et al (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29:267–273. https://doi.org/10.1038/nbt.1788. (PMID: 10.1038/nbt.1788213586354866999)
      Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383:1581–1592. (PMID: 10.1016/S0140-6736(14)60617-6)
      Han Y, Duan X, Yang L et al (2020) Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589:270–275. https://doi.org/10.1038/s41586-020-2901-9. (PMID: 10.1038/s41586-020-2901-9331162998034380)
      Hawkins F, Kramer P, Jacob A et al (2017) Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 127:2277–2294. https://doi.org/10.1172/JCI89950. (PMID: 10.1172/JCI89950284632265451263)
      Hawkins FJ, Suzuki S, Lou BM et al (2021) Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 28:79-95.e8. https://doi.org/10.1016/j.stem.2020.09.017. (PMID: 10.1016/j.stem.2020.09.01733098807)
      Hekman RM, Hume AJ, Goel RK et al (2020) Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2. Mol Cell 80:1104-1122.e9. https://doi.org/10.1016/j.molcel.2020.11.028. (PMID: 10.1016/j.molcel.2020.11.028332598127674017)
      Huang SXL, Islam MN, O’Neill J et al (2013) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91. https://doi.org/10.1038/nbt.2754. (PMID: 10.1038/nbt.2754242918154101921)
      Huang J, Hume AJ, Abo KM et al (2020) SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell 27:962-973.e7. https://doi.org/10.1016/j.stem.2020.09.013. (PMID: 10.1016/j.stem.2020.09.013329793167500949)
      Huch M, Gehart H, Van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312. https://doi.org/10.1016/J.CELL.2014.11.050. (PMID: 10.1016/J.CELL.2014.11.050255337854313365)
      Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890. https://doi.org/10.1002/pmic.200900758. (PMID: 10.1002/pmic.20090075820162561)
      Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668. https://doi.org/10.1126/science.1188302. (PMID: 10.1126/science.1188302205768858335790)
      Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147. https://doi.org/10.1126/scitranslmed.3004249. (PMID: 10.1126/scitranslmed.3004249231360428265389)
      Ikeo S, Yamamoto Y, Ikeda K et al (2021) Core-shell hydrogel microfiber-expanded pluripotent stem cell-derived lung progenitors applicable to lung reconstruction in vivo. Biomaterials 276:121031. https://doi.org/10.1016/j.biomaterials.2021.121031. (PMID: 10.1016/j.biomaterials.2021.12103134304138)
      Inoue A, Saijo Y, Maemondo M et al (2003) Severe acute interstitial pneumonia and gefitinib. Lancet 361:137–139. https://doi.org/10.1016/S0140-6736(03)12190-3. (PMID: 10.1016/S0140-6736(03)12190-312531582)
      Jacob A, Morley M, Hawkins F et al (2017) Differentiation of Human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21:472-488.e10. https://doi.org/10.1016/j.stem.2017.08.014. (PMID: 10.1016/j.stem.2017.08.014289657665755620)
      Jain A, Barrile R, van der Meer AD et al (2018) Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther 103:332–340. https://doi.org/10.1002/cpt.742. (PMID: 10.1002/cpt.74228516446)
      Jang KJ, Mehr AP, Hamilton GA et al (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (UK) 5:1119–1129. https://doi.org/10.1039/c3ib40049b. (PMID: 10.1039/c3ib40049b)
      Jo T, Michihata N, Yamana H et al (2021) Risk of drug-induced interstitial lung disease in hospitalised patients: a nested case-control study. Thorax. https://doi.org/10.1136/thoraxjnl-2020-215824. (PMID: 10.1136/thoraxjnl-2020-21582433888574)
      Kanagaki S, Ikeo S, Suezawa T et al (2020) Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells. https://doi.org/10.1002/stem.3302. (PMID: 10.1002/stem.3302332418967898721)
      Kanagaki S, Ikeo S, Suezawa T et al (2021a) Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 39:156–169. https://doi.org/10.1002/stem.3302. (PMID: 10.1002/stem.330233241896)
      Kanagaki S, Suezawa T, Moriguchi K et al (2021b) Hydroxypropyl cyclodextrin improves amiodarone-induced aberrant lipid homeostasis of alveolar cells. Am J Respir Cell Mol Biol 64:504–514. https://doi.org/10.1165/rcmb.2020-0119OC. (PMID: 10.1165/rcmb.2020-0119OC33493427)
      Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499. (PMID: 10.1038/nrd1750)
      Kassis T, Hernandez-Gordillo V, Langer R, Griffith LG (2019) OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-48874-y. (PMID: 10.1038/s41598-019-48874-y)
      Katsura H, Sontake V, Tata A et al (2020) Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell 27:890. https://doi.org/10.1016/J.STEM.2020.10.005. (PMID: 10.1016/J.STEM.2020.10.005331288957577733)
      Katzen J, Beers MF (2020) Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 130:5088–5099. (PMID: 10.1172/JCI139519)
      Kegeles E, Naumov A, Karpulevich EA et al (2020) Convolutional neural networks can predict retinal differentiation in retinal organoids. Front Cell Neurosci 14:171. https://doi.org/10.3389/fncel.2020.00171. (PMID: 10.3389/fncel.2020.00171327195857350982)
      Kim M, Mun H, Sung CO et al (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 101(10):1–15. https://doi.org/10.1038/s41467-019-11867-6. (PMID: 10.1038/s41467-019-11867-6)
      Knowles DA, Burrows CK, Blischak JD et al (2018) Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes. Elife. https://doi.org/10.7554/elife.33480. (PMID: 10.7554/elife.33480297372786010343)
      Kolla V, Gonzales LW, Gonzales J et al (2007) Thyroid transcription factor in differentiating type II cells: regulation, isoforms, and target genes. Am J Respir Cell Mol Biol 36:213–225. https://doi.org/10.1165/rcmb.2006-0207OC. (PMID: 10.1165/rcmb.2006-0207OC16960125)
      Kondo T, Asai M, Tsukita K et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–496. https://doi.org/10.1016/j.stem.2013.01.009. (PMID: 10.1016/j.stem.2013.01.00923434393)
      Konishi S, Gotoh S, Tateishi K et al (2016) Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep 6:18–25. https://doi.org/10.1016/j.stemcr.2015.11.010. (PMID: 10.1016/j.stemcr.2015.11.010)
      Korogi Y, Gotoh S, Ikeo S et al (2019) In vitro disease modeling of Hermansky–Pudlak syndrome type 2 using human induced pluripotent stem cell-derived alveolar organoids. Stem Cell Rep 12:431–440. https://doi.org/10.1016/j.stemcr.2019.01.014. (PMID: 10.1016/j.stemcr.2019.01.014)
      Kudoh S, Kato H, Nishiwaki Y et al (2008) Interstitial lung disease in Japanese patients with lung cancer: a cohort and nested case-control study. Am J Respir Crit Care Med 177:1348–1357. https://doi.org/10.1164/rccm.200710-1501OC. (PMID: 10.1164/rccm.200710-1501OC18337594)
      Lancaster MA, Knoblich JA (2014) Organogenesisin a dish: modeling development and disease using organoid technologies. Science 345.
      Lauschke VM, Hendriks DFG, Bell CC et al (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29:1936–1955. https://doi.org/10.1021/ACS.chemrestox.6B00150. (PMID: 10.1021/ACS.chemrestox.6B0015027661221)
      Lechner AJ, Driver IH, Lee J et al (2017) Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21:120-134.e7. https://doi.org/10.1016/j.stem.2017.03.024. (PMID: 10.1016/j.stem.2017.03.024285064645501755)
      Leishman DJ, Abernathy MM, Wang EB (2020) Revisiting the hERG safety margin after 20 years of routine hERG screening. J Pharmacol Toxicol Methods. https://doi.org/10.1016/J.VASCN.2020.106900. (PMID: 10.1016/J.VASCN.2020.10690032866658)
      Li X, Francies HE, Secrier M et al (2018) Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-05190-9. (PMID: 10.1038/s41467-018-05190-9)
      Lindemans CA, Calafiore M, Mertelsmann AM et al (2015) Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528:560–564. https://doi.org/10.1038/nature16460. (PMID: 10.1038/nature16460266498194720437)
      Lu HR, Vlaminckx E, Hermans AN et al (2008) Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. Br J Pharmacol 154:1427–1438. https://doi.org/10.1038/bjp.2008.191. (PMID: 10.1038/bjp.2008.191184932432440085)
      Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:379–399. (PMID: 10.1152/ajplung.00010.2008)
      McCauley KB, Hawkins F, Serra M et al (2017) Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of wnt signaling. Cell Stem Cell 20:844-857.e6. https://doi.org/10.1016/j.stem.2017.03.001. (PMID: 10.1016/j.stem.2017.03.001283665875457392)
      Mertens J, Wang QW, Kim Y et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527:95–99. https://doi.org/10.1038/nature15526. (PMID: 10.1038/nature15526265245274742055)
      Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching program of mouse lung development. Nature 453:745. https://doi.org/10.1038/NATURE07005. (PMID: 10.1038/NATURE07005184636322892995)
      Miller AJ, Hill DR, Nagy MS et al (2018) In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep 10:101–119. https://doi.org/10.1016/j.stemcr.2017.11.012. (PMID: 10.1016/j.stemcr.2017.11.012)
      Miller AJ, Dye BR, Ferrer-Torres D et al (2019) Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 14:518–540. https://doi.org/10.1038/s41596-018-0104-8. (PMID: 10.1038/s41596-018-0104-8306646806531049)
      Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382. (PMID: 10.1016/j.biocel.2007.08.011)
      Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev 23:237–244. https://doi.org/10.1089/ten.teb.2016.0322. (PMID: 10.1089/ten.teb.2016.032227917703)
      Montgomery MT, Sajuthi SP, Cho SH et al (2020) Genome-wide analysis reveals mucociliary remodeling of the nasal airway epithelium induced by urban PM2.5. Am J Respir Cell Mol Biol 63:172–184. https://doi.org/10.1165/rcmb.2019-0454OC. (PMID: 10.1165/rcmb.2019-0454OC322758397397762)
      Morissette P, Regan C, Fitzgerald K et al (2016) Shortening of the electromechanical window in the ketamine/xylazine-anesthetized guinea pig model to assess pro-arrhythmic risk in early drug development. J Pharmacol Toxicol Methods 81:171–182. https://doi.org/10.1016/J.VASCN.2016.06.003. (PMID: 10.1016/J.VASCN.2016.06.00327377419)
      Morrisey EE, Hogan BLM (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23. https://doi.org/10.1016/J.DEVCEL.2009.12.010. (PMID: 10.1016/J.DEVCEL.2009.12.010201521743736813)
      Mou H, Vinarsky V, Tata PR et al (2016) Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19:217–231. https://doi.org/10.1016/J.STEM.2016.05.012. (PMID: 10.1016/J.STEM.2016.05.012273200414975684)
      Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. (PMID: 10.1038/nbt.2958)
      Nikolić MZ, Caritg O, Jeng Q et al (2017) Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife. https://doi.org/10.7554/eLife.26575. (PMID: 10.7554/eLife.26575286652715555721)
      Park E, Gintant GA, Devi K et al (2018) Can non-clinical repolarization assays predict the results of clinical thorough QT studies? Results from a research consortium. Br J Pharmacol 175:606–617. https://doi.org/10.1111/BPH.14101. (PMID: 10.1111/BPH.14101291818505786459)
      Pichler WJ, Tilch J (2004) The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy Eur J Allergy Clin Immunol 59:809–820. (PMID: 10.1111/j.1398-9995.2004.00547.x)
      Pollard CE, Skinner M, Lazic SE et al (2017) An analysis of the relationship between preclinical and clinical QT interval-related data. Toxicol Sci 159:94–101. https://doi.org/10.1093/TOXSCI/KFX125. (PMID: 10.1093/TOXSCI/KFX12528903488)
      Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15:e1002686. https://doi.org/10.1371/journal.pmed.1002686. (PMID: 10.1371/journal.pmed.1002686304579886245676)
      Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265. https://doi.org/10.1016/S1470-2045(15)70054-9. (PMID: 10.1016/S1470-2045(15)70054-9257044395726228)
      Rock JR, Onaitis MW, Rawlins EL et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106:12771–12775. https://doi.org/10.1073/pnas.0906850106. (PMID: 10.1073/pnas.0906850106196256152714281)
      Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350:1013–1022. https://doi.org/10.1056/nejmra032426. (PMID: 10.1056/nejmra03242614999113)
      Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22:310–324. https://doi.org/10.1016/J.STEM.2018.02.011. (PMID: 10.1016/J.STEM.2018.02.011294991515837068)
      Rossi SE, Erasmus JJ, McAdams HP et al (2000) Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics 20:1245–1259. https://doi.org/10.1148/radiographics.20.5.g00se081245. (PMID: 10.1148/radiographics.20.5.g00se081245)
      Sachs N, Papaspyropoulos A, Ommen DDZ et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38:e100300. https://doi.org/10.15252/EMBJ.2018100300. (PMID: 10.15252/EMBJ.2018100300306430216376275)
      Sakai Y, Takemoto S, Hori K et al (2018) Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Annu Int Conf IEEE Eng Med Biol Soc, pp 4138–4141.
      Salahudeen AA, Choi SS, Rustagi A et al (2020) Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 588:670. https://doi.org/10.1038/S41586-020-3014-1. (PMID: 10.1038/S41586-020-3014-1332382908003326)
      Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O (2015) Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci Rep 5:1–9. https://doi.org/10.1038/srep08163. (PMID: 10.1038/srep08163)
      Shah P, Fritz JV, Glaab E et al (2016) A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 7:1–15. https://doi.org/10.1038/ncomms11535. (PMID: 10.1038/ncomms11535)
      Shannon JM, Mason RJ, Jennings SD (1987) Functional differentiation of alveolar type II epithelial cells in vitro: Effects of cell shape, cell-matrix interactions and cell-cell interactions. BBA Mol Cell Res 931:143–156. https://doi.org/10.1016/0167-4889(87)90200-X. (PMID: 10.1016/0167-4889(87)90200-X)
      Shi L, Tang J, Tong L, Liu Z (2014) Risk of interstitial lung disease with gefitinib and erlotinib in advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials. Lung Cancer 83:231–239. https://doi.org/10.1016/j.lungcan.2013.11.016. (PMID: 10.1016/j.lungcan.2013.11.01624332320)
      Shinozawa T, Kimura M, Cai Y et al (2021) High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160:831–846. https://doi.org/10.1053/j.gastro.2020.10.002. (PMID: 10.1053/j.gastro.2020.10.00233039464)
      Sleijfer S (2001) Bleomycin-induced pneumonitis. Chest 120:617–624. https://doi.org/10.1378/chest.120.2.617. (PMID: 10.1378/chest.120.2.61711502668)
      Sone N, Konishi S, Igura K et al (2021) Multicellular modeling of ciliopathy by combining ips cells and microfluidic airway-on-a-chip technology. Sci Transl Med 13:1298. https://doi.org/10.1126/scitranslmed.abb1298. (PMID: 10.1126/scitranslmed.abb1298)
      Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138. (PMID: 10.1126/science.1106587)
      Strauss DG, Gintant G, Li Z et al (2018) Comprehensive in vitro proarrhythmia assay (CiPA) update from a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/FDA Meeting. Ther Innov Regul Sci 534(53):519–525. https://doi.org/10.1177/2168479018795117. (PMID: 10.1177/2168479018795117)
      Suezawa T, Kanagaki S, Korogi Y et al (2021a) Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specificiPSCs. Respir Res 22:284. https://doi.org/10.1186/s12931-021-01877-8. (PMID: 10.1186/s12931-021-01877-8347364698570015)
      Suezawa T, Kanagaki S, Moriguchi K, et al (2021b) Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2021.10.015.
      Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484. https://doi.org/10.1038/nature12271. (PMID: 10.1038/nature1227123823721)
      Taylor DA, Sampaio LC, Ferdous Z et al (2018) Decellularized matrices in regenerative medicine. Acta Biomater 74:74–89. (PMID: 10.1016/j.actbio.2018.04.044)
      Westphalen K, Gusarova GA, Islam MN et al (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–506. https://doi.org/10.1038/nature12902. (PMID: 10.1038/nature12902244635234117212)
      Witherden IR, Vanden Bon EJ, Goldstraw P et al (2004) Primary human alveolar type II epithelial cell chemokine release: effects of cigarette smoke and neutrophil elastase. Am J Respir Cell Mol Biol 30:500–509. https://doi.org/10.1165/rcmb.4890. (PMID: 10.1165/rcmb.489015033639)
      Wong AP, Bear CE, Chin S et al (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30:876–882. https://doi.org/10.1038/nbt.2328. (PMID: 10.1038/nbt.2328229226723994104)
      Yamamoto Y, Gotoh S, Korogi Y et al (2017) Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 1411(14):1097–1106. https://doi.org/10.1038/nmeth.4448. (PMID: 10.1038/nmeth.4448)
      Yin X, Riva L, Pu Y et al (2021) MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep 34:108628. https://doi.org/10.1016/j.celrep.2020.108628. (PMID: 10.1016/j.celrep.2020.108628334401487832566)
      Youk J, Kim T, Evans KV et al (2020) Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 27:905-919.e10. https://doi.org/10.1016/j.stem.2020.10.004. (PMID: 10.1016/j.stem.2020.10.004331421137577700)
      Yui S, Nakamura T, Sato T et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5 + stem cell. Nat Med 18:618–623. https://doi.org/10.1038/nm.2695. (PMID: 10.1038/nm.269522406745)
      Zhang YS, Arneri A, Bersini S et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003. (PMID: 10.1016/j.biomaterials.2016.09.003277108325198581)
      Zimoch J, Padial JS, Klar AS et al (2018) Polyisocyanopeptide hydrogels: a novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater 70:129–139. https://doi.org/10.1016/j.actbio.2018.01.042. (PMID: 10.1016/j.actbio.2018.01.04229454158)
      Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251. (PMID: 10.1146/annurev.cellbio.042308.113344)
    • Contributed Indexing:
      Keywords: Airway; Alveolar; Lung; Organoid; Pluripotent stem cell; iPS cell
    • الموضوع:
      Date Created: 20220101 Date Completed: 20220328 Latest Revision: 20220328
    • الموضوع:
      20221213
    • الرقم المعرف:
      PMC8720162
    • الرقم المعرف:
      10.1007/s00204-021-03188-9
    • الرقم المعرف:
      34973109