Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Using semantics to scale up evidence-based chemical risk-assessments.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- المؤلفون: Blake C;Blake C; Flaws JA; Flaws JA
- المصدر:
PloS one [PLoS One] 2021 Dec 15; Vol. 16 (12), pp. e0260712. Date of Electronic Publication: 2021 Dec 15 (Print Publication: 2021).
- نوع النشر :
Journal Article
- اللغة:
English
- معلومة اضافية
- المصدر:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- بيانات النشر:
Original Publication: San Francisco, CA : Public Library of Science
- الموضوع:
- نبذة مختصرة :
Competing Interests: The authors have declared that no competing interests exist.
Background: The manual processes used for risk assessments are not scaling to the amount of data available. Although automated approaches appear promising, they must be transparent in a public policy setting.
Objective: Our goal is to create an automated approach that moves beyond retrieval to the extraction step of the information synthesis process, where evidence is characterized as supporting, refuting, or neutral with respect to a given outcome.
Methods: We combine knowledge resources and natural language processing to resolve coordinated ellipses and thus avoid surface level differences between concepts in an ontology and outcomes in an abstract. As with a systematic review, the search criterion, and inclusion and exclusion criterion are explicit.
Results: The system scales to 482K abstracts on 27 chemicals. Results for three endpoints that are critical for cancer risk assessments show that refuting evidence (where the outcome decreased) was higher for cell proliferation (45.9%), and general cell changes (37.7%) than for cell death (25.0%). Moreover, cell death was the only end point where supporting claims were the majority (61.3%). If the number of abstracts that measure an outcome was used as a proxy for association there would be a stronger association with cell proliferation than cell death (20/27 chemicals). However, if the amount of supporting evidence was used (where the outcome increased) the conclusion would change for 21/27 chemicals (20 from proliferation to death and 1 from death to proliferation).
Conclusions: We provide decision makers with a visual representation of supporting, neutral, and refuting evidence whilst maintaining the reproducibility and transparency needed for public policy. Our findings show that results from the retrieval step where the number of abstracts that measure an outcome are reported can be misleading if not accompanied with results from the extraction step where the directionality of the outcome is established.
- References:
J Biomed Inform. 2010 Apr;43(2):173-89. (PMID: 19900574)
BMC Syst Biol. 2011 Jul 02;5:105. (PMID: 21722388)
J Biomed Inform. 2015 Aug;56:42-56. (PMID: 26003938)
Endocr Rev. 2015 Dec;36(6):E1-E150. (PMID: 26544531)
Bioinform Biol Insights. 2013;7:97-117. (PMID: 23515068)
Environ Mol Mutagen. 2019 Oct;60(8):668-682. (PMID: 31335990)
Front Cell Dev Biol. 2020 Aug 28;8:673. (PMID: 32984300)
Cell. 2011 Mar 4;144(5):646-74. (PMID: 21376230)
Proc AMIA Symp. 2001;:17-21. (PMID: 11825149)
Environ Health. 2020 Nov 17;19(1):117. (PMID: 33203443)
BMC Bioinformatics. 2009 Sep 22;10:303. (PMID: 19772619)
Artif Intell Med. 2021 Aug;118:102098. (PMID: 34412851)
J Biomed Inform. 2017 Aug;72:120-131. (PMID: 28687199)
Environ Health Perspect. 2019 Sep;127(9):97008. (PMID: 31557052)
BMC Bioinformatics. 2012 Jul 09;13:161. (PMID: 22776079)
BMC Bioinformatics. 2015;16 Suppl 10:S3. (PMID: 26202680)
J Environ Manage. 2021 Aug 1;291:112685. (PMID: 33930637)
Bioinformatics. 2016 Feb 1;32(3):432-40. (PMID: 26454282)
Toxicol Lett. 1999 Dec 20;111(1-2):151-60. (PMID: 10630710)
Toxicol Lett. 2016 Jan 22;241:32-7. (PMID: 26562772)
Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. (PMID: 33290552)
J Biomed Semantics. 2016 Jun 07;7:36. (PMID: 27267226)
Bioinformatics. 2020 Feb 15;36(4):1234-1240. (PMID: 31501885)
AMIA Annu Symp Proc. 2017 Feb 10;2016:1900-1909. (PMID: 28269949)
PLoS One. 2012;7(4):e33427. (PMID: 22511921)
Cancer Epidemiol Biomarkers Prev. 2020 Oct;29(10):1887-1903. (PMID: 32152214)
BMC Bioinformatics. 2015;16 Suppl 10:S2. (PMID: 26202570)
Nat Rev Cancer. 2006 Feb;6(2):99-106. (PMID: 16491069)
PLoS One. 2014 Dec 26;9(12):e116016. (PMID: 25541734)
Bioinformatics. 2003;19 Suppl 1:i180-2. (PMID: 12855455)
- الرقم المعرف:
0 (Inorganic Chemicals)
0 (Organic Chemicals)
- الموضوع:
Date Created: 20211215 Date Completed: 20220119 Latest Revision: 20220119
- الموضوع:
20250114
- الرقم المعرف:
PMC8673667
- الرقم المعرف:
10.1371/journal.pone.0260712
- الرقم المعرف:
34910747
No Comments.