Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Improving Automatic Renal Segmentation in Clinically Normal and Abnormal Paediatric DCE-MRI via Contrast Maximisation and Convolutional Networks for Computing Markers of Kidney Function.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101204366 Publication Model: Electronic Cited Medium: Internet ISSN: 1424-8220 (Electronic) Linking ISSN: 14248220 NLM ISO Abbreviation: Sensors (Basel) Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Basel, Switzerland : MDPI, c2000-
    • الموضوع:
    • نبذة مختصرة :
      There is a growing demand for fast, accurate computation of clinical markers to improve renal function and anatomy assessment with a single study. However, conventional techniques have limitations leading to overestimations of kidney function or failure to provide sufficient spatial resolution to target the disease location. In contrast, the computer-aided analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) could generate significant markers, including the glomerular filtration rate (GFR) and time-intensity curves of the cortex and medulla for determining obstruction in the urinary tract. This paper presents a dual-stage fully modular framework for automatic renal compartment segmentation in 4D DCE-MRI volumes. (1) Memory-efficient 3D deep learning is integrated to localise each kidney by harnessing residual convolutional neural networks for improved convergence; segmentation is performed by efficiently learning spatial-temporal information coupled with boundary-preserving fully convolutional dense nets. (2) Renal contextual information is enhanced via non-linear transformation to segment the cortex and medulla. The proposed framework is evaluated on a paediatric dataset containing 60 4D DCE-MRI volumes exhibiting varying conditions affecting kidney function. Our technique outperforms a state-of-the-art approach based on a GrabCut and support vector machine classifier in mean dice similarity (DSC) by 3.8% and demonstrates higher statistical stability with lower standard deviation by 12.4% and 15.7% for cortex and medulla segmentation, respectively.
    • References:
      Magn Reson Imaging. 2020 Jan;65:67-74. (PMID: 31654738)
      Clin Kidney J. 2018 Feb;11(1):12-19. (PMID: 29423195)
      J Pediatr Urol. 2020 Feb;16(1):116-120. (PMID: 31889687)
      Med Phys. 2019 Oct;46(10):4417-4430. (PMID: 31306492)
      Can J Kidney Health Dis. 2017 Mar 02;4:2054358117693355. (PMID: 28321323)
      Magn Reson Med. 2018 Mar;79(3):1696-1707. (PMID: 28656614)
      Clin J Am Soc Nephrol. 2014 Feb;9(2):395-405. (PMID: 24370767)
      AJR Am J Roentgenol. 2015 Mar;204(3):W273-81. (PMID: 25714312)
      J Magn Reson Imaging. 2020 Jul;52(1):207-216. (PMID: 31837071)
      Comput Med Imaging Graph. 2019 Jul;75:1-13. (PMID: 31103856)
      J Med Syst. 2019 Nov 12;43(12):334. (PMID: 31720863)
      IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. (PMID: 26915120)
      F1000Res. 2018 Nov 29;7:. (PMID: 30631428)
      Magn Reson Med. 2014 Sep;72(3):707-17. (PMID: 24142845)
      Proc IEEE Int Symp Comput Based Med Syst. 2021 Jun;2021:166-171. (PMID: 35224185)
      AJR Am J Roentgenol. 2012 Nov;199(5):1060-9. (PMID: 23096180)
      Turk J Urol. 2018 Jan;44(1):45-50. (PMID: 29484227)
      Pediatr Radiol. 2020 May;50(5):698-705. (PMID: 31984436)
      Med Image Anal. 2016 Aug;32:269-80. (PMID: 27236222)
      Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1534-1537. (PMID: 30473744)
      J Pediatr Urol. 2010 Jun;6(3):212-31. (PMID: 20399145)
      Invest Radiol. 2008 Jan;43(1):40-8. (PMID: 18097276)
    • Grant Information:
      1R21DK123569-01 United States DK NIDDK NIH HHS; LTRF1920\16\26 Leverhulme Trust
    • Contributed Indexing:
      Keywords: DCE-MRI; GFR; MR urography; cortex; kidney; medulla; renal compartment; segmentation; time–intensity curve
    • الرقم المعرف:
      0 (Biomarkers)
      0 (Contrast Media)
    • الموضوع:
      Date Created: 20211210 Date Completed: 20211213 Latest Revision: 20231108
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC8659486
    • الرقم المعرف:
      10.3390/s21237942
    • الرقم المعرف:
      34883946