Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group UK Country of Publication: England NLM ID: 101719179 Publication Model: Electronic Cited Medium: Internet ISSN: 2399-3642 (Electronic) Linking ISSN: 23993642 NLM ISO Abbreviation: Commun Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
    • الموضوع:
    • نبذة مختصرة :
      DNA phosphorothioation (PT) is widely distributed in the human gut microbiome. In this work, PT-diet effect on nematodes was studied with PT-bioengineering bacteria. We found that the ROS level decreased by about 20-50% and the age-related lipofuscin accumulation was reduced by 15-25%. Moreover, the PT-feeding worms were more active at all life periods, and more resistant to acute stressors. Intriguingly, their lifespans were prolonged by ~21.7%. Comparative RNA-seq analysis indicated that many gene expressions were dramatically regulated by PT-diet, such as cysteine-rich protein (scl-11/12/13), sulfur-related enzyme (cpr-2), longevity gene (jnk-1) and stress response (sod-3/5, gps-5/6, gst-18/20, hsp-12.8). Both the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that neuroactivity pathways were upregulated, while phosphoryl transfer and DNA-repair pathways were down-regulated in good-appetite young worms. The findings pave the way for pro-longevity of multicellular organisms by PT-bacterial interference.
      (© 2021. The Author(s).)
    • Comments:
      Erratum in: Commun Biol. 2021 Dec 14;4(1):1414. (PMID: 34907327)
    • References:
      Tong, T. et al. Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc. Natl Acad. Sci. USA 115, E2988–e2996 (2018). (PMID: 29531068587970810.1073/pnas.1721916115)
      Wang, L. et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3, 709–710 (2007). (PMID: 1793447510.1038/nchembio.2007.39)
      Zhang, Y. C. et al. Theoretical study on steric effects of DNA phosphorothioation: B-helical destabilization in Rp-phosphorothioated DNA. J. Phys. Chem. B 116, 10639–10648 (2012). (PMID: 2285760810.1021/jp302494b)
      Wang, L. et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl Acad. Sci. USA 108, 2963–2968 (2011). (PMID: 21285367304111110.1073/pnas.1017261108)
      Cao, B. et al. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat. Commun. 5, 3951 (2014). (PMID: 2489956810.1038/ncomms4951)
      Chen, L. et al. Theoretical study on the relationship between Rp-phosphorothioation and base-step in S-DNA: based on energetic and structural analysis. J. Phys. Chem. B 119, 474–481 (2015). (PMID: 2551947210.1021/jp511359e)
      Liu, G. et al. Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat. Commun. 9, 4689 (2018). (PMID: 30409991622461010.1038/s41467-018-07093-1)
      Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10, 1688 (2019). (PMID: 30975999645991810.1038/s41467-019-09390-9)
      Yu, H. et al. DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses. Nucleic Acids Res. 48, 8755–8766 (2020). (PMID: 32621606747094510.1093/nar/gkaa574)
      Xie, X. et al. Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res. 40, 9115–9124 (2012). (PMID: 22772986346704910.1093/nar/gks650)
      Wu, T. et al. Mechanistic investigation on ROS resistance of phosphorothioated DNA. Sci. Rep. 7, 42823 (2017). (PMID: 28216673531699210.1038/srep42823)
      Huang, Q. et al. Defense mechanism of phosphorothioated DNA under peroxynitrite-mediated oxidative stress. ACS Chem. Biol. 15, 2558–2567 (2020). (PMID: 3281644210.1021/acschembio.0c00591)
      Xu, T. et al. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res. 38, 7133–7141 (2010). (PMID: 20627870297837510.1093/nar/gkq610)
      Xiong, X. et al. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928 (2020). (PMID: 3225137010.1038/s41564-020-0700-6)
      Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat. Microbiol. 3, 773–780 (2018). (PMID: 29891864658297010.1038/s41564-018-0174-y)
      Wu, Y. et al. RNA phosphorothioate modification in prokaryotes and eukaryotes. ACS Chem. Biol. 15, 1301–1305 (2020). (PMID: 3227539010.1021/acschembio.0c00163)
      Sun, Y. et al. DNA phosphorothioate modifications are widely distributed in the human microbiome. Biomolecules 10, 1175 (2020). (PMID: 746410610.3390/biom10081175)
      Dai, D. et al. DNA phosphorothioate modification plays a role in peroxides resistance in Streptomyces lividans. Front. Microbiol. 7, 1380 (2016). (PMID: 27630631500593410.3389/fmicb.2016.01380)
      Kellner, S. et al. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat. Chem. Biol. 13, 888–894 (2017). (PMID: 28604692557736810.1038/nchembio.2407)
      Yang, Y. et al. DNA backbone sulfur-modification expands microbial growth range under multiple stresses by its anti-oxidation function. Sci. Rep. 7, 3516 (2017). (PMID: 28615635547119910.1038/s41598-017-02445-1)
      Eruslanov, E. et al. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 594, 57–72 (2010). (PMID: 2007290910.1007/978-1-60761-411-1_4)
      Armstrong, D. Preface. Advanced protocols in oxidative stress III. Methods Mol. Biol. 1208, v–vi (2015). (PMID: 25485340)
      Büchter, C. et al. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int J. Mol. Sci. 14, 11895–11914 (2013). (PMID: 23736695370976210.3390/ijms140611895)
      Ray, A. et al. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 5, e984 (2014). (PMID: 24407237404070510.1038/cddis.2013.513)
      Lee, S. J. et al. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131–2136 (2010). (PMID: 21093262305881110.1016/j.cub.2010.10.057)
      Wen, Y. et al. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal. Chem. 86, 9970–9976 (2014). (PMID: 2519657810.1021/ac502909c)
      Zhou, Z. et al. A dual-signal colorimetric and near-infrared fluorescence probe for the detection of exogenous and endogenous hydrogen peroxide in living cells. Sens. Actuators B 280, 120–128 (2019). (PMID: 10.1016/j.snb.2018.09.126)
      Gusarov, I. et al. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152, 818–830 (2013). (PMID: 2341522910.1016/j.cell.2012.12.043)
      Pincus, Z. et al. Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging 8, 889–898 (2016). (PMID: 27070172493184210.18632/aging.100936)
      König, J. et al. Mitochondrial contribution to lipofuscin formation. Redox Biol. 11, 673–681 (2017). (PMID: 28160744529276110.1016/j.redox.2017.01.017)
      Chen, Y. L. et al. Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy. Nat. Commun. 10, 2602 (2019). (PMID: 31197136656572410.1038/s41467-019-10475-8)
      Komura, T. et al. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14, 73–87 (2013). (PMID: 2329197610.1007/s10522-012-9411-6)
      Kato, M., Hamazaki, Y., Sun, S., Nishikawa, Y. & Kage-Nakadai, E. Clostridium butyricum MIYAIRI 588 increases the lifespan and multiple-stress resistance of Caenorhabditis elegans. Nutrients 10, 1921 (2018). (PMID: 631680710.3390/nu10121921)
      Park, H. H. et al. Survival assays using Caenorhabditis elegans. Mol. Cells 40, 90–99 (2017). (PMID: 28241407533950810.14348/molcells.2017.0017)
      Reczek, C. R. et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat. Chem. Biol. 13, 1274–1279 (2017). (PMID: 29058724569809910.1038/nchembio.2499)
      Muhlemann, J. K. et al. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc. Natl. Acad. Sci. USA 115, E11188–e11197 (2018). (PMID: 30413622625520510.1073/pnas.1811492115)
      Kammeyer, A. et al. Oxidation events and skin aging. Ageing Res Rev. 21, 16–29 (2015). (PMID: 2565318910.1016/j.arr.2015.01.001)
      Li, S. T. et al. DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis elegans to cope with internal stress. Aging Cell 18, e12896 (2019). (PMID: 30773782651615710.1111/acel.12896)
      Gomez-Amaro, R. L. et al. Measuring food intake and nutrient absorption in Caenorhabditis elegans. Genetics 200, 443–454 (2015). (PMID: 25903497449237110.1534/genetics.115.175851)
      Wilson, M. A. et al. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5, 59–68 (2006). (PMID: 1644184410.1111/j.1474-9726.2006.00192.x)
      Tharyan, R. G. Transcription factor nfyb-1 regulates mitochondrial function and promotes longevity induced by mitochondrial impairment. PhD thesis, Universität zu Köln (2019).
      Gao, A. W. et al. Identification of key pathways and metabolic fingerprints of longevity in C. elegans. Exp. Gerontol. 113, 128–140 (2018). (PMID: 30300667622470910.1016/j.exger.2018.10.003)
      Halaschek-Wiener, J. et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res. 15, 603–615 (2005). (PMID: 15837805108828910.1101/gr.3274805)
      Wan, Q. L. et al. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct. 11, 347–357 (2020). (PMID: 3179953310.1039/C9FO02000D)
      Lin, C. et al. Antistress and anti-aging activities of Caenorhabditis elegans were enhanced by Momordica saponin extract. Eur. J. Nutr. 60, 1819–1832 (2021). (PMID: 3286053210.1007/s00394-020-02338-6)
      Zhang, L. et al. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic. Biol. Med. 46, 414–421 (2009). (PMID: 1906195010.1016/j.freeradbiomed.2008.10.041)
      Yang, Z. Z. et al. Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans. Free Radic. Biol. Med. 129, 310–322 (2018). (PMID: 3026668110.1016/j.freeradbiomed.2018.09.035)
      Jayarathne, S. et al. Tart cherry increases lifespan in Caenorhabditis elegans by altering metabolic signaling pathways. Nutrients 12, 1482 (2020). (PMID: 728519910.3390/nu12051482)
      Hang, W. et al. Significant longevity-extending effects of a tetrapeptide from maize on Caenorhabditis elegans under stress. Food Chem. 130, 254–260 (2012). (PMID: 10.1016/j.foodchem.2011.07.027)
      Vijg, J. et al. Genome instability and aging. Annu. Rev. Physiol. 75, 645–668 (2013). (PMID: 2339815710.1146/annurev-physiol-030212-183715)
      Burhans, W. C. et al. DNA replication stress, genome instability and aging. Nucleic Acids Res 35, 7545–7556 (2007). (PMID: 18055498219071010.1093/nar/gkm1059)
      Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015). (PMID: 2663363210.1038/nature16139)
      Bae, Y. S. et al. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491–509 (2011). (PMID: 22207195388768510.1007/s10059-011-0276-3)
      Bertero, E. et al. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122, 1460–1478 (2018). (PMID: 2974836910.1161/CIRCRESAHA.118.310082)
      Nickel, A. et al. Mitochondrial reactive oxygen species production and elimination. J. Mol. Cell Cardiol. 73, 26–33 (2014). (PMID: 2465772010.1016/j.yjmcc.2014.03.011)
      Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019). (PMID: 3150158810.1038/s41582-019-0244-7)
      Niccoli, T. et al. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012). (PMID: 2297500510.1016/j.cub.2012.07.024)
      Zorov, D. B. et al. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014). (PMID: 24987008410163210.1152/physrev.00026.2013)
      Podmore, I. D. et al. Vitamin C exhibits pro-oxidant properties. Nature 392, 559 (1998). (PMID: 956015010.1038/33308)
      Rietjens, I. M. et al. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 11, 321–333 (2002). (PMID: 2178261510.1016/S1382-6689(02)00003-0)
      Kaźmierczak-Barańska, J. et al. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 12, 1501 (2020). (PMID: 728514710.3390/nu12051501)
      Carocho, M. et al. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51, 15–25 (2013). (PMID: 2301778210.1016/j.fct.2012.09.021)
      Meydani, M. Nutrition interventions in aging and age-associated disease. Ann. N. Y. Acad. Sci. 928, 226–235 (2001). (PMID: 1179551410.1111/j.1749-6632.2001.tb05652.x)
      Moreno-Macias, H. et al. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 133, 1237–1244 (2014). (PMID: 2476687310.1016/j.jaci.2014.03.020)
      Polidori, M. C. Antioxidant micronutrients in the prevention of age-related diseases. J. Postgrad. Med. 49, 229–235 (2003). (PMID: 14597786)
      Wu, Z. et al. Nutrients, microglia aging, and brain aging. Oxid. Med. Cell Longev. 2016, 7498528 (2016). (PMID: 26941889475298910.1155/2016/7498528)
      Jafarlou, M. et al. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy. J. Biol. Regul. Homeost. Agents 30, 315–321 (2016). (PMID: 27358116)
      Wirth, T. et al. History of gene therapy. Gene. 525, 162–169 (2013). (PMID: 2361881510.1016/j.gene.2013.03.137)
      Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014). (PMID: 2535365210.1089/nat.2014.0506)
      Trapani, I. et al. Seeing the light after 25 years of retinal gene therapy. Trends Mol. Med. 24, 669–681 (2018). (PMID: 2998333510.1016/j.molmed.2018.06.006)
      Ma, C. C. et al. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol. Adv. 40, 107502 (2020). (PMID: 3188734510.1016/j.biotechadv.2019.107502)
      Tepper, R. G. et al. PQM-1 complements DAF-16 as a key transcriptional regulator of daf-2-mediated development and longevity. Cell 154, 676–690 (2013). (PMID: 23911329376372610.1016/j.cell.2013.07.006)
      Zečić, A. et al. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells. 9, 109 (2020).
      Kimura, K. D. et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997). (PMID: 925232310.1126/science.277.5328.942)
      De Magalhaes Filho, C. D. et al. Visible light reduces C. elegans longevity. Nat. Commun. 9, 927 (2018). (PMID: 29500338583452610.1038/s41467-018-02934-5)
      Chen, J., et al. Metformin extends C. elegans lifespan through lysosomal pathway. Elife 6, e31268 (2017).
      Dehghan, E. et al. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat. Commun. 8, 2223 (2017). (PMID: 29263362573836410.1038/s41467-017-02394-3)
      Kim, D. et al. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). (PMID: 25751142465581710.1038/nmeth.3317)
      Anders, S. et al. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). (PMID: 2526070010.1093/bioinformatics/btu638)
      Love, M. I. et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
    • Grant Information:
      31770070 National Natural Science Foundation of China (National Science Foundation of China)
    • Molecular Sequence:
      figshare 10.6084/m9.figshare.16909399.v1; 10.6084/m9.figshare.16909417.v1; 10.6084/m9.figshare.16909426.v1
    • الرقم المعرف:
      0 (DNA, Bacterial)
      0 (Phosphates)
      0 (Reactive Oxygen Species)
      TYM4M7EWCW (thiophosphoric acid)
    • الموضوع:
      Date Created: 20211126 Date Completed: 20211210 Latest Revision: 20221030
    • الموضوع:
      20240829
    • الرقم المعرف:
      PMC8617147
    • الرقم المعرف:
      10.1038/s42003-021-02863-y
    • الرقم المعرف:
      34824369