Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pulse arrival time as a surrogate of blood pressure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Various models have been proposed for the estimation of blood pressure (BP) from pulse transit time (PTT). PTT is defined as the time delay of the pressure wave, produced by left ventricular contraction, measured between a proximal and a distal site along the arterial tree. Most researchers, when they measure the time difference between the peak of the R-wave in the electrocardiogram signal (corresponding to left ventricular depolarisation) and a fiducial point in the photoplethysmogram waveform (as measured by a pulse oximeter attached to the fingertip), describe this erroneously as the PTT. In fact, this is the pulse arrival time (PAT), which includes not only PTT, but also the time delay between the electrical depolarisation of the heart's left ventricle and the opening of the aortic valve, known as pre-ejection period (PEP). PEP has been suggested to present a significant limitation to BP estimation using PAT. This work investigates the impact of PEP on PAT, leading to a discussion on the best models for BP estimation using PAT or PTT. We conducted a clinical study involving 30 healthy volunteers (53.3% female, 30.9 ± 9.35 years old, with a body mass index of 22.7 ± 3.2 kg/m[Formula: see text]). Each session lasted on average 27.9 ± 0.6 min and BP was varied by an infusion of phenylephrine (a medication that causes venous and arterial vasoconstriction). We introduced new processing steps for the analysis of PAT and PEP signals. Various population-based models (Poon, Gesche and Fung) and a posteriori models (inverse linear, inverse squared and logarithm) for estimation of BP from PTT or PAT were evaluated. Across the cohort, PEP was found to increase by 5.5 ms ± 4.5 ms from its baseline value. Variations in PTT were significantly larger in amplitude, - 16.8 ms ± 7.5 ms. We suggest, therefore, that for infusions of phenylephrine, the contribution of PEP on PAT can be neglected. All population-based models produced large BP estimation errors, suggesting that they are insufficient for modelling the complex pathways relating changes in PTT or PAT to changes in BP. Although PAT is inversely correlated with systolic blood pressure (SBP), the gradient of this relationship varies significantly from individual to individual, from - 2946 to - 470.64 mmHg/s in our dataset. For the a posteriori inverse squared model, the root mean squared errors (RMSE) for systolic and diastolic blood pressure (DBP) estimation from PAT were 5.49 mmHg and 3.82 mmHg, respectively. The RMSEs for SBP and DBP estimation by PTT were 4.51 mmHg and 3.53 mmHg, respectively. These models take into account individual calibration curves required for accurate blood pressure estimation. The best performing population-based model (Poon) reported error values around double that of the a posteriori inverse squared model, and so the use of population-based models is not justified.
      (© 2021. The Author(s).)
    • References:
      Physiol Meas. 2018 Sep 24;39(9):095005. (PMID: 30109991)
      Iran J Med Sci. 2011 Sep;36(3):183-7. (PMID: 23357939)
      Pharmacol Res. 2018 Mar;129:95-99. (PMID: 29127059)
      Hypertension. 2005 Jul;46(1):156-61. (PMID: 15939805)
      Crit Care. 2008;12(4):174. (PMID: 18771592)
      Psychophysiology. 2019 Jul;56(7):e13355. (PMID: 30835856)
      IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901. (PMID: 26057530)
      Diagnostics (Basel). 2018 Sep 10;8(3):. (PMID: 30201887)
      Psychophysiology. 2017 Mar;54(3):350-357. (PMID: 27914174)
      IEEE Trans Biomed Eng. 2018 Jun;65(6):1410-1420. (PMID: 28952930)
      Psychophysiology. 2009 May;46(3):451-7. (PMID: 19226305)
      Physiol Meas. 2002 Feb;23(1):85-93. (PMID: 11876244)
      Physiol Meas. 2008 Jan;29(1):15-32. (PMID: 18175857)
      Conf Proc IEEE Eng Med Biol Soc. 2005;2005:5877-80. (PMID: 17281597)
      Conf Proc IEEE Eng Med Biol Soc. 2004;2006:738-41. (PMID: 17271783)
      Hypertension. 2015 Jul;66(1):175-82. (PMID: 25941345)
      J Clin Med. 2019 Mar 11;8(3):. (PMID: 30862031)
      Psychophysiology. 1979 Nov;16(6):546-53. (PMID: 229507)
      J Appl Physiol (1985). 2006 Jan;100(1):136-41. (PMID: 16141378)
      Psychophysiology. 1979 May;16(3):292-301. (PMID: 441223)
      Eur J Appl Physiol. 2012 Jan;112(1):309-15. (PMID: 21556814)
      Cardiovasc Eng. 2009 Mar;9(1):32-8. (PMID: 19381806)
      Physiol Meas. 2017 Nov 30;38(12):2122-2140. (PMID: 29058686)
      Psychophysiology. 2018 Aug;55(8):e13072. (PMID: 29512163)
      Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11144-11149. (PMID: 30322935)
      Anesthesiology. 2011 Nov;115(5):973-8. (PMID: 21952254)
      Psychophysiology. 2007 Jan;44(1):113-9. (PMID: 17241147)
      Psychophysiology. 1990 Jan;27(1):1-23. (PMID: 2187214)
      IEEE Trans Biomed Eng. 2017 Apr;64(4):859-869. (PMID: 27323356)
      J Appl Physiol (1985). 2011 Dec;111(6):1681-6. (PMID: 21960657)
      Am J Health Syst Pharm. 2008 Feb 1;65(3):209-18. (PMID: 18216005)
      Physiol Meas. 2020 Aug 11;41(7):075002. (PMID: 32784269)
      Eur J Appl Physiol. 2011 Jan;111(1):135-44. (PMID: 20824282)
      Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1691-4. (PMID: 19163004)
      Curr Hypertens Rep. 2010 Oct;12(5):349-55. (PMID: 20694858)
      J Healthc Eng. 2020 Feb 10;2020:1078251. (PMID: 32104555)
      Med Biol Eng Comput. 2000 Sep;38(5):569-74. (PMID: 11094816)
      IEEE Trans Biomed Eng. 2014 Feb;61(2):346-52. (PMID: 24158470)
      BMC Med Res Methodol. 2011 Apr 27;11:59. (PMID: 21524301)
      IEEE Trans Biomed Eng. 2015 Nov;62(11):2657-64. (PMID: 26054058)
      Chest. 2018 Apr;153(4):1023-1039. (PMID: 29108815)
      Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3):. (PMID: 30556049)
      BMJ Open. 2020 Jun 11;10(6):e036235. (PMID: 32532774)
      Cardiovasc Res. 2006 Apr 1;70(1):12-21. (PMID: 16360130)
      IEEE Trans Biomed Eng. 2018 Nov;65(11):2384-2391. (PMID: 29993523)
      IEEE Trans Biomed Eng. 1985 Mar;32(3):230-6. (PMID: 3997178)
      JAMA. 2013 Sep 4;310(9):959-68. (PMID: 24002282)
      Int J Psychophysiol. 2013 Jan;87(1):60-9. (PMID: 23142412)
      Front Physiol. 2018 Dec 21;9:1848. (PMID: 30622482)
      Lancet Neurol. 2019 Mar;18(3):307-318. (PMID: 30784558)
      Hypertension. 2018 Mar;71(3):368-374. (PMID: 29386350)
      J Sleep Res. 2014 Aug;23(4):406-13. (PMID: 24605887)
      Ultrason Imaging. 1979 Oct;1(4):356-67. (PMID: 575833)
      Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5088-92. (PMID: 17946673)
      IEEE Trans Biomed Eng. 2014 Jul;61(7):2179-86. (PMID: 24760899)
      Am J Hypertens. 2016 Nov 1;29(11):1223-1233. (PMID: 27405964)
      Psychophysiology. 2008 Sep;45(5):869-75. (PMID: 18665860)
    • الموضوع:
      Date Created: 20211124 Date Completed: 20220131 Latest Revision: 20240404
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC8611024
    • الرقم المعرف:
      10.1038/s41598-021-01358-4
    • الرقم المعرف:
      34815419