Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium pullulans: Effect of the Enzymatic Hydrolysis Parameters.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Gautério GV;Gautério GV; Hübner T; Hübner T; Ribeiro TDR; Ribeiro TDR; Ziotti APM; Ziotti APM; Kalil SJ; Kalil SJ
- المصدر:
Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2022 Feb; Vol. 194 (2), pp. 862-881. Date of Electronic Publication: 2021 Sep 22.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol
- بيانات النشر: Original Publication: Clifton, N.J. : Humana Press, c1981-
- الموضوع: Oligosaccharides*/chemistry ; Oligosaccharides*/metabolism ; Glucuronates*/metabolism ; Endo-1,4-beta Xylanases*/metabolism ; Xylose*/metabolism ; Aureobasidium*/metabolism; Hydrolysis ; Hydrogen-Ion Concentration ; Xylans/metabolism ; Fungal Proteins/metabolism ; Fungal Proteins/chemistry ; Temperature
- نبذة مختصرة : Xylooligosaccharides (XOS) are non-digestible and fermentable oligomers that stand out for their efficient production by enzymatic hydrolysis and beneficial effects on human health. This study aimed to investigate the influence of the main reaction parameters of the beechwood xylan hydrolysis using crude xylanase from Aureobasidium pullulans CCT 1261, thus achieving the maximum XOS production. The effects of temperature (40 to 50 °C), reaction time (12 to 48 h), type of agitation, substrate concentration (1 to 6%, w/v), xylanase loading (100 to 300 U/g xylan), and pH (4.0 to 6.0) on the XOS production were fully evaluated. The most suitable conditions for XOS production included orbital shaking of 180 rpm, 40 °C, and 24 h of reaction. High contents of total XOS (10.1 mg/mL) and XOS with degree of polymerization (DP) of 2-3 (9.7 mg/mL), besides to a high percentage of XOS (99.1%), were obtained at 6% (w/v) of beechwood xylan, xylanase loading of 260 U/g xylan, and pH 6.0. The establishment of the best hydrolysis conditions allowed increasing both the content of total XOS 1.5-fold and the percentage of XOS by 9.4%, when compared to the initial production (6.7 mg/mL and 89.7%, respectively). Thus, this study established an efficient enzymatic hydrolysis process that results in a hydrolysate containing XOS with potential prebiotic character (i.e., rich in XOS with DP 2-3) and low xylose amounts.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75. (PMID: 10.1038/nrgastro.2017.75)
Figueiredo, F. C., Ranke, F. F. de B., & Oliva-Neto, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT - Food Science and Technology, 118(October 2019), 108761. https://doi.org/10.1016/j.lwt.2019.108761.
Paiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety, and depression. European Neuropsychopharmacology, 34, 1–18. https://doi.org/10.1016/j.euroneuro.2020.03.006. (PMID: 10.1016/j.euroneuro.2020.03.00632241688)
Belsito, P. C., Ferreira, M. V. S., Cappato, L. P., Cavalcanti, R. N., Vidal, V. A. S., Pimentel, T. C., Esmerinod, E. A., Balthazar, C. F., Neto, M. I. B., Tavares, P. B., Zacarchencon, M. Q., Freitas, M. C., Silva, R. S. L., Pastore, G. M., Pollonio, M. A. R., & Cruz, A. G. (2017). Manufacture of Requeijão cremoso processed cheese with galactooligosaccharide. Carbohydrate Polymers, 174, 869–875. https://doi.org/10.1016/j.carbpol.2017.07.021. (PMID: 10.1016/j.carbpol.2017.07.02128821142)
Costa, M. F., Pimentel, T. C., Guimaraes, J. T., Balthazar, C. F., Rocha, R. S., Cavalcanti, R. N., Esmerino, E. A., Freitas, M. Q., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2019). Impact of prebiotics on the rheological characteristics and volatile compounds of Greek yogurt. LWT - Food Science and Technology, 105(January), 371–376. https://doi.org/10.1016/j.lwt.2019.02.007. (PMID: 10.1016/j.lwt.2019.02.007)
Fernandes, L. M., Guimarães, J. T., Silva, R., Rocha, R. S., Coutinho, N. M., Balthazar, C. F., Calvacanti, R. N., Piler, C. W., Pimentel, T. C., Neto, R. P. C., Tavares, M. I., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Cruz, A. G. (2020). Whey protein films added with galactooligosaccharide and xylooligosaccharide. Food Hydrocolloids, 104 (September 2019). https://doi.org/10.1016/j.foodhyd.2020.105755.
MarketsandMarkets TM . (2018). Prebiotic Ingredients Market Worth 7.37 Billion USD by 2023. Retrieved January 20, 2021, from https://www.prnewswire.com/news-releases/prebiotic-ingredients-market-worth-737-billion-usd-by-2023-670471503.html/.
de Freitas, C., Carmona, E., & Brienzo, M. (2019). Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioactive Carbohydrates and Dietary Fibre, 18, 100184. https://doi.org/10.1016/j.bcdf.2019.100184. (PMID: 10.1016/j.bcdf.2019.100184)
IUB-IUPAC Joint Commission on Biochemical Nomenclature (JCBN). (1982). Abbreviated terminology of oligosaccharide chains - Recomendations 1980*. The Journal of Biological Chemistry, 257(7), 3347–3351. PMID: 7061480. (PMID: 10.1016/S0021-9258(18)34777-X)
Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088. (PMID: 10.1016/j.biortech.2010.01.08820171088)
Aachary, A. A., & Prapulla, S. G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety, 10(1), 2–16. https://doi.org/10.1111/j.1541-4337.2010.00135.x. (PMID: 10.1111/j.1541-4337.2010.00135.x)
Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62–71. https://doi.org/10.1016/j.bcdf.2014.12.003. (PMID: 10.1016/j.bcdf.2014.12.003)
Wang, Y., Guo, Q., Douglas Goff, H., & LaPointe, G. (2019). Oligosaccharides: Structure, function and application. In Encyclopedia of Food Chemistry (pp. 202–207). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21585-0.
Amorim, C., Silvério, S. C., Cardoso, B. B., Alves, J. I., Pereira, M. A., & Rodrigues, L. R. (2020). In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610. Carbohydrate Polymers, 229, 115460. https://doi.org/10.1016/j.carbpol.2019.115460.
Nieto-domínguez, M., De Eugenio, L. I., York-durán, M. J., Rodríguez-colinas, B., Plou, F. J., Chenoll, E., Pardo, E., Codoñer, F., & Martínez, M. J. (2017). Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chemistry, 232, 105–113. https://doi.org/10.1016/j.foodchem.2017.03.149. (PMID: 10.1016/j.foodchem.2017.03.14928490053)
Finegold, S. M., Li, Z., Summanen, P. H., Downes, J., Thames, G., Corbett, K., Dowd, S., Krak, M., & Heber, D. (2014). Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food and Function, 5(3), 436–445. https://doi.org/10.1039/c3fo60348b.
Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5, 19–30. https://doi.org/10.1016/j.bcdf.2014.11.003. (PMID: 10.1016/j.bcdf.2014.11.003)
Guerreiro, I., Oliva-Teles, A., & Enes, P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture, 441, 57–63. https://doi.org/10.1016/j.aquaculture.2015.02.015. (PMID: 10.1016/j.aquaculture.2015.02.015)
Pourabedin, M., Chen, Q., Yang, M. M., & Zhao, X. (2017). Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS microbiology ecology, 93(1), 1–11. https://doi.org/10.1093/femsec/fiw226. (PMID: 10.1093/femsec/fiw226)
Valls, C., Pastor, F. I. J., Vidal, T., Roncero, M. B., Díaz, P., Martínez, J., & Valenzuela, S. V. (2018). Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydrate Polymers, 194(December 2017), 43–50. https://doi.org/10.1016/j.carbpol.2018.04.028. (PMID: 10.1016/j.carbpol.2018.04.02829801857)
Yu, X., Yin, J., Li, L., Luan, C., Zhang, J., Zhao, C., & Li, S. (2015). Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. Journal of Microbiology and Biotechnology, 25(7), 1084–1092. https://doi.org/10.4014/jmb.1501.01022. (PMID: 10.4014/jmb.1501.0102225791856)
Food and Drug Administration (2013). Generally Recognized as Safe (GRAS) - GRN 458. Retrieved December 15, 2020, from https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/.
Moniz, P., Ho, A. L., Duarte, L. C., Kolida, S., Rastall, R. A., Pereira, H., & Carvalheiro, F. (2016). Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydrate Polymers, 136, 466–473. https://doi.org/10.1016/j.carbpol.2015.09.046. (PMID: 10.1016/j.carbpol.2015.09.04626572377)
Surek, E., & Buyukkileci, A. O. (2017). Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydrate Polymers, 174, 565–571. https://doi.org/10.1016/j.carbpol.2017.06.109. (PMID: 10.1016/j.carbpol.2017.06.10928821105)
Akpinar, O., Erdogan, K., & Bostanci, S. (2009). Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydrate Research, 344(5), 660–666. https://doi.org/10.1016/j.carres.2009.01.015. (PMID: 10.1016/j.carres.2009.01.01519211099)
Guido, E. S., Silveira, J. T., & Kalil, S. J. (2019). Enzymatic production of xylooligosaccharides from beechwood xylan: Effect of xylanase preparation on carbohydrate profile of the hydrolysates. International Food Research Journal, 26(2), 713–721.
Ávila, P. F., Franco Cairo, J. P. L., Damasio, A., Forte, M. B. S., & Goldbeck, R. (2020). Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Research International, 128(March 2019), 108702. https://doi.org/10.1016/j.foodres.2019.108702.
Amorim, C., Silvério, S. C., & Rodrigues, L. R. (2019). One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chemistry, 270(March 2018), 86–94. https://doi.org/10.1016/j.foodchem.2018.07.080. (PMID: 10.1016/j.foodchem.2018.07.08030174095)
Reque, P. M., Pinilla, C. M. B., Gautério, G. V., Kalil, S. J., & Brandelli, A. (2019). Xylooligosaccharides production from wheat middlings bioprocessed with Bacillus subtilis. Food Research International, 126, 108673. https://doi.org/10.1016/j.foodres.2019.108673. (PMID: 10.1016/j.foodres.2019.10867331732088)
Chapla, D., Pandit, P., & Shah, A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology, 115, 215–221. https://doi.org/10.1016/j.biortech.2011.10.083. (PMID: 10.1016/j.biortech.2011.10.08322100233)
Yang, H., Wang, K., Song, X., & Xu, F. (2011). Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa. Bioresource Technology, 102(14), 7171–7176. https://doi.org/10.1016/j.biortech.2011.03.110. (PMID: 10.1016/j.biortech.2011.03.11021565493)
Reddy, S. S., & Krishnan, C. (2016). Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT - Food Science and Technology, 65, 237–245. https://doi.org/10.1016/j.lwt.2015.08.013. (PMID: 10.1016/j.lwt.2015.08.013)
Singh, R. D., Banerjee, J., Sasmal, S., Muir, J., & Arora, A. (2018). High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresource Technology, 256(January), 110–117. https://doi.org/10.1016/j.biortech.2018.02.009. (PMID: 10.1016/j.biortech.2018.02.00929433045)
Li, H. Y., Wang, B., Wen, J. L., Cao, X. F., Sun, S. N., & Sun, R. C. (2018). Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Conversion and Management, 155(October 2017), 58–67. https://doi.org/10.1016/j.enconman.2017.10.089. (PMID: 10.1016/j.enconman.2017.10.089)
Gowdhaman, D., & Ponnusami, V. (2015). Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. International Journal of Biological Macromolecules, 79, 595–600. https://doi.org/10.1016/j.ijbiomac.2015.05.046. (PMID: 10.1016/j.ijbiomac.2015.05.04626038103)
Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219–228. https://doi.org/10.1016/S1369-5274(03)00056-0. (PMID: 10.1016/S1369-5274(03)00056-012831897)
Sheng, P., Xu, J., Saccone, G., Li, K., & Zhang, H. (2014). Discovery and characterization of endo-xylanase and β-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. Journal of Molecular Catalysis B: Enzymatic, 105, 33–40. https://doi.org/10.1016/j.molcatb.2014.03.019.
Gautério, G. V., Vieira, M. C., Gonçalves, L. G. G., Hübner, T., Sanzo, A. V. L., & Kalil, S. J. (2018). Production of xylanolitic enzymes and xylooligosaccharides by Aureobasidium pullulans CCT 1261 in submerged cultivation. Industrial Crops and Products, 125(August), 335–345. https://doi.org/10.1016/j.indcrop.2018.09.011. (PMID: 10.1016/j.indcrop.2018.09.011)
Gautério, G. V., da Silva, L. G. G., Hübner, T., da Rosa Ribeiro, T., & Kalil, S. J. (2020). Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, 23(January). https://doi.org/10.1016/j.bcab.2020.101511.
Machado, T. B., Corrêa Junior, L. C. S., de Mattos, M. V. C. da V., Gautério, G. V., & Kalil, S. J. (2021). Sequential alkaline and ultrasound pretreatments of oat hulls improve xylanase production by Aureobasidium pullulans in submerged cultivation. Waste and Biomass Valorization, (0123456789). https://doi.org/10.1007/s12649-021-01425-x.
Gautério, G. V., da Silva, L. G. G., Hübner, T., da Ribeiro, T., & R., & Kalil, S. J. . (2021). Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: Biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis. Process Biochemistry, 104(October 2020), 161–170. https://doi.org/10.1016/j.procbio.2021.03.009. (PMID: 10.1016/j.procbio.2021.03.009)
Azelee, N. I. W., Jahim, J. M., Ismail, A. F., Fuzi, S. F. Z. M., Rahman, R. A., & Illias, R. M. (2016). High xylooligosaccharides (XOS) production from pretreated kenaf stem by enzyme mixture hydrolysis. Industrial Crops and Products, 81, 11–19. https://doi.org/10.1016/j.indcrop.2015.11.038. (PMID: 10.1016/j.indcrop.2015.11.038)
Brienzo, M., Carvalho, W., & Milagres, A. M. F. (2010). Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Applied Biochemistry and Biotechnology, 162(4), 1195–1205. https://doi.org/10.1007/s12010-009-8892-5. (PMID: 10.1007/s12010-009-8892-520066571)
Mobarec, H., Villagomez, R., Nordberg Karlsson, E., & Linares-Pastén, J. A. (2021). Microwave-assisted xylanase reaction: Impact in the production of prebiotic xylooligosaccharides. RSC Advances, 11(20), 11882–11888. https://doi.org/10.1039/d1ra00449b. (PMID: 10.1039/d1ra00449b)
Faryar, R., Linares-Pastén, J. A., Immerzeel, P., Mamo, G., Andersson, M., Stalbrand, H., Mattiasson, B., & Karlsson, E. N. (2014). Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food and Bioproducts Processing, 3, 1–10. https://doi.org/10.1016/j.fbp.2014.11.004. (PMID: 10.1016/j.fbp.2014.11.004)
Aachary, A. A., & Prapulla, S. G. (2009). Value addition to corncob: Production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology, 100(2), 991–995. https://doi.org/10.1016/j.biortech.2008.06.050. (PMID: 10.1016/j.biortech.2008.06.05018703333)
Boonchuay, P., Techapun, C., Seesuriyachan, P., & Chaiyaso, T. (2014). Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Science and Biotechnology, 23(5), 1515–1523. https://doi.org/10.1007/s10068-014-0207-0. (PMID: 10.1007/s10068-014-0207-0)
Rodrigues, M. I., & Iemma, A. F. (2012). Experimental design and process optimization (Second.). Cárita Editora.
Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270. https://doi.org/10.1016/0168-1656(92)90074-J. (PMID: 10.1016/0168-1656(92)90074-J)
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030. (PMID: 10.1021/ac60147a030)
Gullón, P., Moura, P., Esteves, M. P., Girio, F. M., Domínguez, H., & Parajó, J. C. (2008). Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. Journal of Agricultural and Food Chemistry, 56(16), 7482–7487. https://doi.org/10.1021/jf800715b. (PMID: 10.1021/jf800715b18642926)
Kim, Y. A., & Yoon, K. H. (2010). Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 20(12), 1711–1716. https://doi.org/10.4014/jmb.1010.10040. (PMID: 10.4014/jmb.1010.1004021193828)
Bankeeree, W., Akada, R., Lotrakul, P., Punnapayak, H., & Prasongsuk, S. (2018). Enzymatic hydrolysis of black liquor xylan by a novel xylose-tolerant, thermostable β-xylosidase from a tropical strain of Aureobasidium pullulans CBS 135684. Applied Biochemistry and Biotechnology, 184(3), 919–934. https://doi.org/10.1007/s12010-017-2598-x. (PMID: 10.1007/s12010-017-2598-x28918541)
Dobberstein, J., & Emeis, C. (1991). Purification and characterization of β- xylosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology and Biotechnology, 2, 210–215. https://doi.org/10.1007/s12010-017-2598-x. (PMID: 10.1007/s12010-017-2598-x)
Ohta, K., Fujimoto, H., Fujii, S., & Wakiyama, M. (2010). Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering, 110(2), 152–157. https://doi.org/10.1016/j.jbiosc.2010.02.008. (PMID: 10.1016/j.jbiosc.2010.02.00820547381)
Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, 43(1), 119–125. https://doi.org/10.1016/j.lwt.2009.06.025. (PMID: 10.1016/j.lwt.2009.06.025)
Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Ellouz Chaabouni, S. (2015). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94(August), 536–546. https://doi.org/10.1016/j.fbp.2014.07.012. (PMID: 10.1016/j.fbp.2014.07.012)
Surek, E., Buyukkileci, A. O., & Yegin, S. (2021). Processing of hazelnut (Corylus avellana L.) shell autohydrolysis liquor for production of low molecular weight xylooligosaccharides by Aureobasidium pullulans NRRL Y–2311–1 xylanase. Industrial Crops and Products, 161(January), 113212. https://doi.org/10.1016/j.indcrop.2020.113212.
Ajijolakewu, K. A., Peng, C., Keong, C., Abdullah, W., & Nadiah, W. (2017). Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars. Biocatalysis and Agricultural Biotechnology, 11(October 2016), 166–175. https://doi.org/10.1016/j.bcab.2017.06.005. (PMID: 10.1016/j.bcab.2017.06.005)
Guido, E. S. (2016). Produção de xilo-oligossacarídeos por hidrólise enzimática de xilanas. PhD thesis, Universidade Federal do Rio Grande.
Kiran, E. U., Akpinar, O., & Bakir, U. (2013). Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food and Bioproducts Processing, 91(4), 565–574. https://doi.org/10.1016/j.fbp.2012.12.002. (PMID: 10.1016/j.fbp.2012.12.002)
Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2006). Enzymatic production of pentoses from the hemicellulose fraction of corn residues. LWT - Food Science and Technology, 39(4), 388–392. https://doi.org/10.1016/j.lwt.2005.02.005. (PMID: 10.1016/j.lwt.2005.02.005)
Mazlan, N. A., Samad, K. A., Yussof, H. W., Saufi, S. M., & Jahim, J. (2019). Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors. Industrial Crops and Products, 129(December 2018), 575–584. https://doi.org/10.1016/j.indcrop.2018.12.042. (PMID: 10.1016/j.indcrop.2018.12.042) - Grant Information: 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 423285/2018-1 - 304857/2018-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- Contributed Indexing: Keywords: Enzymatic hydrolysis; Experimental design; Potential prebiotics; Xylooligomers
- الرقم المعرف: 0 (Oligosaccharides)
0 (xylooligosaccharide)
0 (Glucuronates)
EC 3.2.1.8 (Endo-1,4-beta Xylanases)
A1TA934AKO (Xylose)
0 (Xylans)
0 (Fungal Proteins) - الموضوع: Aureobasidium pullulans
- الموضوع: Date Created: 20210922 Date Completed: 20240724 Latest Revision: 20240828
- الموضوع: 20240828
- الرقم المعرف: 10.1007/s12010-021-03658-x
- الرقم المعرف: 34550500
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.