Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Medina CA;Medina CA; Samac DA; Samac DA; Yu LX; Yu LX
  • المصدر:
    Scientific reports [Sci Rep] 2021 Aug 26; Vol. 11 (1), pp. 17203. Date of Electronic Publication: 2021 Aug 26.
  • نوع النشر :
    Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
      (© 2021. The Author(s).)
    • References:
      USDA. Census of Agriculture 2017. USDA-National Agricultural Statistics Service 820. https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report (2017).
      Liu, Y., Wu, Q., Ge, G., Han, G. & Jia, Y. Influence of drought stress on afalfa yields and nutritional composition. BMC Plant Biol. 18, 13 (2018). (PMID: 10.1186/s12870-017-1226-9293349165769550)
      Pessarakli, M. & Huber, J. T. Biomass production and protein synthesis by alfalfa under salt stress. J. Plant Nutr. 14, 283–293 (1991). (PMID: 10.1080/01904169109364202)
      Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinform. 13, 278–289 (2015). (PMID: 10.1016/j.gpb.2015.08.002)
      Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016). (PMID: 10.1186/s13059-016-1103-0278876295124260)
      Abdel-Ghany, S. E. et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 7, 11706 (2016). (PMID: 10.1038/ncomms11706273392904931028)
      Feng, S., Xu, M., Liu, F., Cui, C. & Zhou, B. Reconstruction of the full-length transcriptome atlas using PacBio Iso-Seq provides insight into the alternative splicing in Gossypium australe. BMC Plant Biol. 19, 365 (2019). (PMID: 10.1186/s12870-019-1968-7314267396701088)
      Minio, A. et al. Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3 Genes Genomes Genet. https://doi.org/10.1534/g3.118.201008 (2019).
      Kuo, R. I. et al. Illuminating the dark side of the human transcriptome with long read transcript sequencing. BMC Genomics 21, 751 (2020). (PMID: 10.1186/s12864-020-07123-7331268487596999)
      Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007). (PMID: 10.1126/science.113834117510325)
      Zhao, M. et al. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC Plant Biol. 20, 99 (2020). (PMID: 10.1186/s12870-020-2301-1321386637059299)
      Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). (PMID: 10.1186/1471-2105-9-559)
      Zhu, Y. X. et al. Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol. 19, 1–18 (2019). (PMID: 10.1186/s12870-019-1712-3)
      Postnikova, O. A., Shao, J. & Nemchinov, L. G. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 54, 1041–1055 (2013). (PMID: 10.1093/pcp/pct05623592587)
      Dong, W., Liu, X., Li, D., Gao, T. & Song, Y. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS ONE 13, e0204033 (2018). (PMID: 10.1371/journal.pone.0204033302528776155508)
      Shu, Y. et al. Transcriptome sequencing analysis of alfalfa reveals cbf genes potentially playing important roles in response to freezing stress. Genet. Mol. Biol. 40, 824–833 (2017). (PMID: 10.1590/1678-4685-gmb-2017-0053291115655738619)
      Nemchinov, L. G., Shao, J., Lee, M. N., Postnikova, O. A. & Samac, D. A. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv syringae. PLoS ONE 12, e0189781 (2017). (PMID: 10.1371/journal.pone.0189781292448645731681)
      Duan, H.-R. et al. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol. 20, 110 (2020). (PMID: 10.1186/s12870-020-2322-9321645667068929)
      Luo, D. et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 19, 32 (2019). (PMID: 10.1186/s12870-019-1630-4306653586341612)
      PacificBiosciences. Lima. 1. https://github.com/PacificBiosciences/barcoding (2020).
      Bateman, A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019). (PMID: 10.1093/nar/gky1049)
      Pecrix, Y. et al. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat. Plants 4, 1017–1025 (2018). (PMID: 10.1038/s41477-018-0286-730397259)
      Zheng, Y. et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9, 1667–1670 (2016). (PMID: 10.1016/j.molp.2016.09.01427717919)
      Tian, F., Yang, D.-C.C., Meng, Y.-Q.Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020). (PMID: 31701126)
      Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, 222–230 (2014). (PMID: 10.1093/nar/gkt1223)
      Singh, U., Khemka, N., Rajkumar, M. S., Garg, R. & Jain, M. PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucleic Acids Res. 45, e183–e183 (2017). (PMID: 10.1093/nar/gkx866290363545727461)
      Zhang, X.-O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016). (PMID: 10.1101/gr.202895.115273653655052039)
      Chen, H. et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 11, 2494 (2020). (PMID: 10.1038/s41467-020-16338-x324278507237683)
      Hirsch, C. N. et al. Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 26, 121–135 (2014). (PMID: 10.1105/tpc.113.119982244889603963563)
      Zhou, P. et al. Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics 18, 261 (2017). (PMID: 10.1186/s12864-017-3654-1283472755369179)
      Chang, Y.-F., Imam, J. S. & Wilkinson, M. F. The Nonsense-Mediated Decay RNA Surveillance Pathway. Annu. Rev. Biochem. 76, 51–74 (2007). (PMID: 10.1146/annurev.biochem.76.050106.09390917352659)
      He, G.-H. et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in arabidopsis. BMC Plant Biol. 16, 116 (2016). (PMID: 10.1186/s12870-016-0806-4272159384877946)
      Wang, B. et al. A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing. Genome Res. 28, 921–932 (2018). (PMID: 10.1101/gr.227462.117297127555991521)
      Zhou, Q. et al. MYB transcription factors in alfalfa (Medicago sativa): genome-wide identification and expression analysis under abiotic stresses. PeerJ 7, e7714 (2019). (PMID: 10.7717/peerj.7714315762466753925)
      Postnikova, O. A., Shao, J. & Nemchinov, L. G. In silico identification of transcription factors in Medicago sativa using available transcriptomic resources. Mol. Genet. Genomics 289, 457–468 (2014). (PMID: 10.1007/s00438-014-0823-724556904)
      Prasad, K., Xing, D. & Reddy, A. Vascular plant one-zinc-finger (VOZ) transcription factors are positive regulators of salt tolerance in arabidopsis. Int. J. Mol. Sci. 19, 3731 (2018). (PMID: 10.3390/ijms191237316321167)
      Ganie, S. A., Ahammed, G. J. & Wani, S. H. Vascular plant one zinc-finger (VOZ) transcription factors: novel regulators of abiotic stress tolerance in rice (Oryza sativa L.). Genet. Resour. Crop Evol. 67, 799–807 (2020). (PMID: 10.1007/s10722-020-00904-9)
      Cui, G. et al. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC Plant Biol. 19, 575 (2019). (PMID: 10.1186/s12870-019-2192-1318643026925873)
      Richards, D. E., Peng, J. & Harberd, N. P. Plant GRAS and metazoan STATs: one family?. BioEssays 22, 573–577 (2000). (PMID: 10.1002/(SICI)1521-1878(200006)22:6<573::AID-BIES10>3.0.CO;2-H10842311)
      Swainsbury, D. J. K., Zhou, L., Oldroyd, G. E. D. & Bornemann, S. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase. Biochemistry 51, 6895–6907 (2012). (PMID: 10.1021/bi300826m22889004)
      Ni, L. et al. Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots. Plant Signal. Behav. 15, 1813999 (2020). (PMID: 10.1080/15592324.2020.1813999328576697588195)
      Uhmeyer, A., Cecchin, M., Ballottari, M. & Wobbe, L. Impaired mitochondrial transcription termination disrupts the stromal redox poise in chlamydomonas. Plant Physiol. 174, 1399–1419 (2017). (PMID: 10.1104/pp.16.00946285002675490881)
      Shen, C. et al. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti Infection. PLoS ONE 9, e107495 (2014). (PMID: 10.1371/journal.pone.0107495252261644166667)
      Wang, T.-Z., Liu, M., Zhao, M.-G., Chen, R. & Zhang, W.-H. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol. 15, 131 (2015). (PMID: 10.1186/s12870-015-0530-5260483924457090)
      Li, S. et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci. Rep. 7, 45981 (2017). (PMID: 10.1038/srep45981283873155384091)
      Zhang, P. et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 98, 697–713 (2019). (PMID: 10.1111/tpj.1426730715761)
      Du, H. et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS ONE 12, e0188964 (2017). (PMID: 10.1371/journal.pone.0188964292118065718555)
      Finkemeier, I. et al. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under Stress. J. Biol. Chem. 280, 12168–12180 (2005). (PMID: 10.1074/jbc.M41318920015632145)
      Horling, F., König, J. & Dietz, K.-J. Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol. Biochem. 40, 491–499 (2002). (PMID: 10.1016/S0981-9428(02)01396-7)
      Yang, Y. et al. Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon. Int. J. Genomics 2019, 1–13 (2019). (PMID: 10.1155/2019/6813086)
      Sakamoto, H., Araki, T., Meshi, T. & Iwabuchi, M. Expression of a subset of the arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248, 23–32 (2000). (PMID: 10.1016/S0378-1119(00)00133-510806347)
      Yin, J. et al. Genome-wide characterization of the C2H2 zinc-finger genes in Cucumis sativus and functional analyses of four CsZFPs in response to stresses. BMC Plant Biol. 20, 359 (2020). (PMID: 10.1186/s12870-020-02575-1327273697392682)
      Li, F. et al. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J. Plant Physiol. 168, 960–966 (2011). (PMID: 10.1016/j.jplph.2010.11.02321316798)
      Shin, D. et al. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem. Biophys. Res. Commun. 323, 534–540 (2004). (PMID: 10.1016/j.bbrc.2004.08.12715369784)
      Song, S., Chen, Y., Zhao, M. & Zhang, W.-H. A novel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environ. Exp. Bot. 80, 1–9 (2012). (PMID: 10.1016/j.envexpbot.2012.02.001)
      Ratajczak, R., Richter, J. & Luttge, U. Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ. 17, 1101–1112 (1994). (PMID: 10.1111/j.1365-3040.1994.tb02008.x)
      Erb, M. et al. Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signal. Behav. 4, 639–641 (2009). (PMID: 10.4161/psb.4.7.8973)
      Zhou, H.-C., Shamala, L. F., Yi, X.-K., Yan, Z. & Wei, S. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci. Rep. 10, 933 (2020). (PMID: 10.1038/s41598-020-57805-1319696416976640)
      Giri, J., Vij, S., Dansana, P. K. & Tyagi, A. K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol. 191, 721–732 (2011). (PMID: 10.1111/j.1469-8137.2011.03740.x21534973)
      Nguyen, Q. H. et al. Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci. Rep. 9, 19663 (2019). (PMID: 10.1038/s41598-019-55895-0318731286928231)
      Houben, M. & Van de Poel, B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10, 695 (2019). (PMID: 10.3389/fpls.2019.00695311915926549523)
      Shen, Q., Uknes, S. J. & Ho, T. H. Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J. Biol. Chem. 268, 23652–23660 (1993). (PMID: 10.1016/S0021-9258(19)49512-48226892)
      Rémus-Borel, W. et al. Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor. Appl. Genet. 120, 1163–1174 (2010). (PMID: 10.1007/s00122-009-1243-720039014)
      Munns, R. Comparative physiology of salt and water stress. Plant. Cell Environ. 25, 239–250 (2002). (PMID: 10.1046/j.0016-8025.2001.00808.x11841667)
      Song, Y. et al. The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana. Plant Physiol. Biochem. 141, 300–305 (2019). (PMID: 10.1016/j.plaphy.2019.06.00731202194)
      Zhu, M. et al. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J. Exp. Bot. 67, 835–844 (2016). (PMID: 10.1093/jxb/erv49326585227)
      Lin, S. et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol. 20, 303 (2020). (PMID: 10.1186/s12870-020-02520-2326113157328273)
      Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station vol. 347 (The College of Agriculture University of California Berkeley, 1950).
      PacificBiosciences. PN 101-763-800 Version 02. Pacific Bioscence 13. https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Iso-Seq-Express-Template-Preparation-for-Sequel-and-Sequel-II-Systems.pdf (2019).
      Gordon, S. P. et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE 10, e0132628 (2015). (PMID: 10.1371/journal.pone.0132628261771944503453)
      Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 10.1093/bioinformatics/btp352195059432723002)
      Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014). (PMID: 10.1093/bioinformatics/btu538251650954253826)
      Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). (PMID: 10.1093/bioinformatics/bty191297502426137996)
      Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). (PMID: 10.1038/nmeth.317625402007)
      Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018). (PMID: 10.1101/gr.222976.1175848618)
      Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts63523104886)
      Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014). (PMID: 10.1093/bioinformatics/btu39324930139)
      Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012). (PMID: 10.1093/nar/gkr94422110026)
      Paytuví Gallart, A., Hermoso Pulido, A., Anzar Martínezde Lagrán, I., Sanseverino, W. & Aiese Cigliano, R. GREENC: a wiki-based database of plant lncRNAs. Nucleic Acids Res. 44, 1161–1166 (2016).
      Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.42.0. https://bioconductor.org/packages/release/bioc/html/topGO.html (2020).
      Andrews, S., Krueger, F., Seconds-Pichon, A., Biggins, F. & Wingett, S. FastQC. A quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Institute. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015).
      Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 10.1038/nmeth.4197282639595600148)
      Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016). (PMID: 10.12688/f1000research.7563.24712774)
      Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 10.1093/bioinformatics/btp61619910308)
      Kolde, R. pheatmap: Pretty heatmaps. https://cran.r-project.org/web/packages/pheatmap/index.html (2015).
      Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). (PMID: 10.1101/gr.123930314597658403769)
      Portereiko, M. F. et al. Nuclear fusion defective1 encodes the arabidopsis RPL21M protein and is required for Karyogamy during Female gametophyte development and fertilization. Plant Physiol. 141, 957–965 (2006). (PMID: 10.1104/pp.106.079319166989011489897)
      Xie, Z., Nolan, T. M., Jiang, H. & Yin, Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in arabidopsis. Front. Plant Sci. 10, 228 (2019). (PMID: 10.3389/fpls.2019.00228308732006403161)
      Du, H. et al. Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol. 154, 1304–1318 (2010). (PMID: 10.1104/pp.110.163741208520322971608)
      Brands, A. & Ho, T. H. D. Function of a plant stress-induced gene, HVA22 synthetic enhancement screen with its yeast homolog reveals its role in vesicular traffic. Plant Physiol. 130, 1121–1131 (2002). (PMID: 10.1104/pp.00771612427979166633)
      Wu, J. et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol. Biochem. 137, 179–188 (2019). (PMID: 10.1016/j.plaphy.2019.02.01030798172)
      Apse, M. P. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ Antiport in arabidopsis. Science 285, 1256–1258 (1999). (PMID: 10.1126/science.285.5431.125610455050)
      Brown, R. E. & Mattjus, P. Glycolipid transfer proteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1771, 746–760 (2007). (PMID: 10.1016/j.bbalip.2007.01.011)
      Wen, B. Q., Xing, M. Q., Zhang, H., Dai, C. & Xue, H. W. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1. J. Integr. Plant Biol. https://doi.org/10.1111/j.1744-7909.2011.01075.x (2011). (PMID: 10.1111/j.1744-7909.2011.01075.x21951842)
      Wang, Q. J. et al. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol. J. https://doi.org/10.1111/pbi.12556 (2016). (PMID: 10.1111/pbi.12556278628205399001)
      Isono, E. & Nagel, M.-K. Deubiquitylating enzymes and their emerging role in plant biology. Front. Plant Sci. 5, 1–6 (2014). (PMID: 10.3389/fpls.2014.00056)
      Dixon, D. P. & Edwards, R. Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Sci. 171, 360–366 (2006). (PMID: 10.1016/j.plantsci.2006.04.00822980205)
      Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief. Bioinform. 12, 449–462 (2011). (PMID: 10.1093/bib/bbr042218736353178059)
    • الرقم المعرف:
      0 (Plant Proteins)
      0 (RNA, Plant)
      0 (RNA, Untranslated)
    • الموضوع:
      Date Created: 20210827 Date Completed: 20211108 Latest Revision: 20230206
    • الموضوع:
      20230206
    • الرقم المعرف:
      PMC8390513
    • الرقم المعرف:
      10.1038/s41598-021-96712-x
    • الرقم المعرف:
      34446782