Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Linking common human diseases to their phenotypes; development of a resource for human phenomics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Biomed Central Country of Publication: England NLM ID: 101531992 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1480 (Electronic) NLM ISO Abbreviation: J Biomed Semantics Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] : Biomed Central
    • الموضوع:
    • نبذة مختصرة :
      Background: In recent years a large volume of clinical genomics data has become available due to rapid advances in sequencing technologies. Efficient exploitation of this genomics data requires linkage to patient phenotype profiles. Current resources providing disease-phenotype associations are not comprehensive, and they often do not have broad coverage of the disease terminologies, particularly ICD-10, which is still the primary terminology used in clinical settings.
      Methods: We developed two approaches to gather disease-phenotype associations. First, we used a text mining method that utilizes semantic relations in phenotype ontologies, and applies statistical methods to extract associations between diseases in ICD-10 and phenotype ontology classes from the literature. Second, we developed a semi-automatic way to collect ICD-10-phenotype associations from existing resources containing known relationships.
      Results: We generated four datasets. Two of them are independent datasets linking diseases to their phenotypes based on text mining and semi-automatic strategies. The remaining two datasets are generated from these datasets and cover a subset of ICD-10 classes of common diseases contained in UK Biobank. We extensively validated our text mined and semi-automatically curated datasets by: comparing them against an expert-curated validation dataset containing disease-phenotype associations, measuring their similarity to disease-phenotype associations found in public databases, and assessing how well they could be used to recover gene-disease associations using phenotype similarity.
      Conclusion: We find that our text mining method can produce phenotype annotations of diseases that are correct but often too general to have significant information content, or too specific to accurately reflect the typical manifestations of the sporadic disease. On the other hand, the datasets generated from integrating multiple knowledgebases are more complete (i.e., cover more of the required phenotype annotations for a given disease). We make all data freely available at https://doi.org/10.5281/zenodo.4726713 .
      (© 2021. The Author(s).)
    • References:
      Brief Bioinform. 2018 Sep 28;19(5):1008-1021. (PMID: 28387809)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D955-D962. (PMID: 30407550)
      Hum Immunol. 1999 Aug;60(8):688-96. (PMID: 10439314)
      J Biomed Semantics. 2017 Dec 19;8(1):58. (PMID: 29258588)
      N Engl J Med. 2019 Jul 4;381(1):64-74. (PMID: 31269367)
      Annu Rev Genomics Hum Genet. 2020 Aug 31;21:351-372. (PMID: 32283948)
      Curr Med Chem. 2018 Jan 30;25(3):404-432. (PMID: 28721829)
      PLoS Genet. 2013;9(1):e1003087. (PMID: 23382687)
      Clin Genet. 2007 Jan;71(1):1-11. (PMID: 17204041)
      Nucleic Acids Res. 2017 Jan 4;45(D1):D712-D722. (PMID: 27899636)
      Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90. (PMID: 17502601)
      Nat Rev Genet. 2019 Aug;20(8):467-484. (PMID: 31068683)
      F1000Res. 2016 Apr 19;5:. (PMID: 27134742)
      N Engl J Med. 2021 Jan 7;384(1):1-4. (PMID: 33393745)
      Sci Rep. 2017 Mar 13;7:38837. (PMID: 28287610)
      Sci Rep. 2015 Jun 08;5:10888. (PMID: 26051359)
      Am J Hum Genet. 2008 Nov;83(5):610-5. (PMID: 18950739)
      Nucleic Acids Res. 2020 Jan 8;48(D1):D704-D715. (PMID: 31701156)
      Sci Rep. 2016 Jun 09;6:27414. (PMID: 27278246)
      Sci Transl Med. 2014 Sep 3;6(252):252ra123. (PMID: 25186178)
      Front Genet. 2020 May 13;11:424. (PMID: 32477401)
      Lancet. 2019 Jun 8;393(10188):2275. (PMID: 31180012)
      Cell. 2013 Sep 26;155(1):70-80. (PMID: 24074861)
      Dis Model Mech. 2010 May-Jun;3(5-6):281-9. (PMID: 20427557)
      Mol Med. 2020 Nov 25;26(1):117. (PMID: 33238891)
      Genes (Basel). 2020 Apr 23;11(4):. (PMID: 32340307)
      J Cutan Pathol. 2007 Oct;34(10):739-47. (PMID: 17880578)
      Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18924-18933. (PMID: 32753378)
      Hum Mutat. 2000;15(1):57-61. (PMID: 10612823)
      J Biomed Semantics. 2016 Mar 23;7:8. (PMID: 27011785)
      Nucleic Acids Res. 2021 Jan 8;49(D1):D1207-D1217. (PMID: 33264411)
      Nucleic Acids Res. 2011 Oct;39(18):e119. (PMID: 21737429)
      Genome Med. 2015 Apr 30;7(1):41. (PMID: 25937834)
      Bioinformatics. 2010 Apr 15;26(8):1112-8. (PMID: 20200009)
      Eur J Hum Genet. 2020 Feb;28(2):165-173. (PMID: 31527858)
      Genome Med. 2019 Dec 31;12(1):5. (PMID: 31892366)
      Sci Rep. 2018 Oct 2;8(1):14681. (PMID: 30279426)
      Wiley Interdiscip Rev Syst Biol Med. 2009 Nov-Dec;1(3):390-399. (PMID: 20052305)
    • Grant Information:
      MC_PC_17228 United Kingdom MRC_ Medical Research Council; MC_QA137853 United Kingdom MRC_ Medical Research Council
    • Contributed Indexing:
      Keywords: Disease–phenotype associations; Ontologies; Text mining; UK Biobank
    • الموضوع:
      Date Created: 20210824 Date Completed: 20211028 Latest Revision: 20220223
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC8383460
    • الرقم المعرف:
      10.1186/s13326-021-00249-x
    • الرقم المعرف:
      34425897