Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: Hindawi Country of Publication: United States NLM ID: 101277751 Publication Model: eCollection Cited Medium: Internet ISSN: 1748-6718 (Electronic) Linking ISSN: 1748670X NLM ISO Abbreviation: Comput Math Methods Med Subsets: MEDLINE
- بيانات النشر:
Publication: 2011-2024 : New York : Hindawi
Original Publication: London : Taylor & Francis, c2006-
- الموضوع:
- نبذة مختصرة :
Competing Interests: The authors declare that they have no conflicts of interest.
Purpose: To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could be used to differentiate triple-negative breast cancer (TNBC) and nontriple-negative breast cancer (non-TNBC).
Materials and Methods: This retrospective study included DCE-MRI images of 81 breast cancer patients (44 TNBC and 37 non-TNBC) from August 2018 to October 2019. The MR scans were achieved at a 1.5 T MR scanner. For each patient, the largest tumor mass was selected to analyze. Three-dimensional (3D) images of the regions of interest (ROIs) were automatically segmented on the third DCE phase by a deep learning segmentation model; then, the ROIs were checked and revised by 2 radiologists. DCE-MRI radiomics features were extracted from the 3D tumor volume. The patients were randomly divided into training ( N = 57) and test ( N = 24) cohorts. The machine learning classifier was built in the training dataset, and 5-fold cross-validation was performed on the training cohort to train and validate. The data of the test cohort were used to investigate the predictive power of the radiomics model in predicting TNBC and non-TNBC. The performance of the model was evaluated by the area under receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.
Results: The radiomics model based on 15 features got the best performance. The AUC achieved 0.741 for the cross-validation, and 0.867 for the independent testing cohort.
Conclusion: The radiomics model based on automatic image segmentation of DCE-MRI can be used to distinguish TNBC and non-TNBC.
(Copyright © 2021 Mingming Ma et al.)
- References:
Breast Cancer Res. 2019 Sep 12;21(1):106. (PMID: 31514736)
J Magn Reson Imaging. 2017 Aug;46(2):604-616. (PMID: 28152264)
PLoS One. 2020 Aug 17;15(8):e0237587. (PMID: 32804986)
Acad Radiol. 2008 Dec;15(12):1513-25. (PMID: 19000868)
Nature. 2012 Oct 4;490(7418):61-70. (PMID: 23000897)
Breast Cancer Res. 2020 Jun 9;22(1):61. (PMID: 32517735)
Acad Radiol. 2021 Oct;28(10):1352-1360. (PMID: 32709582)
J Breast Cancer. 2015 Jun;18(2):149-59. (PMID: 26155291)
Am J Surg. 2021 Mar;221(3):525-528. (PMID: 33339617)
Med Eng Phys. 2014 Jan;36(1):129-35. (PMID: 23791476)
Breast Cancer Res Treat. 2018 Jun;169(2):217-229. (PMID: 29396665)
Eur Radiol. 2019 Aug;29(8):4456-4467. (PMID: 30617495)
Med Phys. 2013 Dec;40(12):122301. (PMID: 24320532)
Radiology. 2016 Feb;278(2):563-77. (PMID: 26579733)
Cancer Metastasis Rev. 2017 Sep;36(3):547-555. (PMID: 28752247)
J Clin Med. 2020 Jun 14;9(6):. (PMID: 32545851)
Acad Radiol. 2022 Jan;29 Suppl 1:S145-S154. (PMID: 33160859)
Semin Cancer Biol. 2021 Jul;72:238-250. (PMID: 32371013)
Eur Radiol Exp. 2020 Jan 28;4(1):5. (PMID: 31993839)
J Magn Reson Imaging. 2013 Aug;38(2):474-81. (PMID: 23292922)
Breast Cancer Res. 2014 May 20;16(3):210. (PMID: 25928070)
Clin Radiol. 2018 Oct;73(10):909.e1-909.e5. (PMID: 29970244)
Ann Oncol. 2017 Jun 1;28(6):1191-1206. (PMID: 28168275)
- الرقم المعرف:
0 (Contrast Media)
- الموضوع:
Date Created: 20210823 Date Completed: 20211129 Latest Revision: 20240403
- الموضوع:
20250114
- الرقم المعرف:
PMC8371618
- الرقم المعرف:
10.1155/2021/2140465
- الرقم المعرف:
34422088
No Comments.