Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- الموضوع:
- نبذة مختصرة :
We introduce and study a randomized quasi-Monte Carlo method for the simulation of Markov chains up to a random (and possibly unbounded) stopping time. The method simulates n copies of the chain in parallel, using a (d +1)-dimensional, highly uniform point set of cardinality n, randomized independently at each step, where d is the number of uniform random numbers required at each transition of the Markov chain. The general idea is to obtain a better approximation of the state distribution, at each step of the chain, than with standard Monte Carlo. The technique can be used in particular to obtain a low-variance unbiased estimator of the expected total cost when state-dependent costs are paid at each step. It is generally more effective when the state space has a natural order related to the cost function. We provide numerical illustrations where the variance reduction with respect to standard Monte Carlo is substantial. The variance can be reduced by factors of several thousands in some cases. We prove bounds on the convergence rate of the worst-case error and of the variance for special situations where the state space of the chain is a subset of the real numbers. In line with what is typically observed in randomized quasi-Monte Carlo contexts, our empirical results indicate much better convergence than what these bounds guarantee. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of Operations Research is the property of INFORMS: Institute for Operations Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.