Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe 3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.
      (© 2021. The Author(s).)
    • References:
      Microb Cell Fact. 2016 Jul 28;15(1):131. (PMID: 27470070)
      Appl Microbiol Biotechnol. 2011 Jan;89(1):169-77. (PMID: 20857290)
      Appl Microbiol Biotechnol. 1995 Oct;43(5):794-800. (PMID: 7576546)
      Appl Microbiol Biotechnol. 2001 Apr;55(3):263-83. (PMID: 11341306)
      J Am Chem Soc. 2001 Sep 26;123(38):9459-60. (PMID: 11562236)
      Microbiology (Reading). 2012 Jul;158(Pt 7):1745-1757. (PMID: 22539162)
      Org Lett. 2003 Feb 6;5(3):239-42. (PMID: 12556161)
      Curr Microbiol. 2007 Apr;54(4):302-6. (PMID: 17334842)
      Nat Protoc. 2010 Jan;5(1):51-66. (PMID: 20057381)
      Metab Eng. 2016 Jan;33:119-129. (PMID: 26654797)
      Curr Med Chem. 1999 Oct;6(10):983-1004. (PMID: 10519909)
      Appl Environ Microbiol. 2012 Jan;78(1):89-98. (PMID: 22020510)
      Curr Opin Biotechnol. 2015 Dec;36:168-75. (PMID: 26360870)
      Genome Announc. 2018 May 3;6(18):. (PMID: 29724833)
      J Bacteriol. 2003 Jul;185(13):3718-25. (PMID: 12813064)
      Nat Biotechnol. 2005 Jul;23(7):873-8. (PMID: 15980861)
      Mol Plant Microbe Interact. 2004 May;17(5):557-66. (PMID: 15141960)
      Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1403-13. (PMID: 23897464)
      Antioxid Redox Signal. 2018 Dec 10;29(17):1756-1773. (PMID: 28793787)
      J Biol Eng. 2011 Sep 20;5:12. (PMID: 21933410)
      Curr Med Chem. 2005;12(26):3063-83. (PMID: 16375701)
      Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9797-9802. (PMID: 30201715)
      J Biol Chem. 2011 May 20;286(20):18213-21. (PMID: 21454481)
      Appl Environ Microbiol. 2002 Jul;68(7):3308-14. (PMID: 12089008)
      Biochemistry. 2004 Oct 5;43(39):12427-35. (PMID: 15449932)
      Curr Opin Biotechnol. 2016 Dec;42:1-6. (PMID: 26921705)
      Trends Biotechnol. 2017 Aug;35(8):785-796. (PMID: 28645530)
      Appl Environ Microbiol. 2015 Dec;81(23):8037-43. (PMID: 26362984)
      Appl Microbiol Biotechnol. 2017 Sep;101(17):6607-6613. (PMID: 28702795)
      Electrophoresis. 2000 Nov;21(17):3797-809. (PMID: 11271498)
      Curr Opin Biotechnol. 2020 Oct;65:65-74. (PMID: 32092624)
      Metab Eng. 2003 Oct;5(4):277-83. (PMID: 14642355)
      Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16431-6. (PMID: 15545603)
      Microb Cell Fact. 2018 Jul 25;17(1):117. (PMID: 30045743)
      Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
      Mikrobiologiia. 2003 Sep-Oct;72(5):645-50. (PMID: 14679903)
      J Bacteriol. 1998 May;180(9):2541-8. (PMID: 9573209)
      J Bacteriol. 2002 Feb;184(4):1046-56. (PMID: 11807065)
      Curr Opin Biotechnol. 2009 Dec;20(6):651-8. (PMID: 19875279)
      Mol Plant Microbe Interact. 2005 Mar;18(3):244-53. (PMID: 15782638)
      Science. 2010 Dec 3;330(6009):1355-8. (PMID: 21127247)
      Metab Eng. 2015 Mar;28:223-239. (PMID: 25576747)
      J Bacteriol. 2012 Mar;194(5):1269-70. (PMID: 22328763)
      FEMS Microbiol Rev. 2011 Jul;35(4):652-80. (PMID: 21361996)
      Sci Rep. 2016 Jun 07;6:27393. (PMID: 27273243)
    • الرقم المعرف:
      0 (Culture Media)
      0 (Ferric Compounds)
      0 (Phenazines)
      0 (phenazine)
      1UQB1BT4OT (3-Hydroxyanthranilic Acid)
    • الموضوع:
      Date Created: 20210813 Date Completed: 20211112 Latest Revision: 20240403
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC8361184
    • الرقم المعرف:
      10.1038/s41598-021-94674-8
    • الرقم المعرف:
      34385485