Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Selection of DNA Aptamers for Differentiation of Human Adipose-Derived Mesenchymal Stem Cells from Fibroblasts.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Clifton, N.J. : Humana Press, c1981-
    • الموضوع:
    • نبذة مختصرة :
      In recent years, stem cell therapy has shown promise in regenerative medicine. The lack of standardized protocols for cell isolation and differentiation generates conflicting results in this field. Mesenchymal stem cells derived from adipose tissue (ASC) and fibroblasts (FIB) share very similar cell membrane markers. In this context, the distinction of mesenchymal stem cells from fibroblasts has been crucial for safe clinical application of these cells. In the present study, we developed aptamers capable of specifically recognize ASC using the Cell-SELEX technique. We tested the affinity of ASC aptamers compared to dermal FIB. Quantitative PCR was advantageous for the in vitro validation of four candidate aptamers. The binding capabilities of Apta 2 and Apta 42 could not distinguish both cell types. At the same time, Apta 21 and Apta 99 showed a better binding capacity to ASC with dissociation constants (Kd) of 50.46 ± 2.28 nM and 72.71 ± 10.3 nM, respectively. However, Apta 21 showed a Kd of 86.78 ± 9.14 nM when incubated with FIB. Therefore, only Apta 99 showed specificity to detect ASC by total internal reflection microscopy (TIRF). This aptamer is a promising tool for the in vitro identification of ASC. These results will help understand the differences between these two cell types for more specific and precise cell therapies.
      (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • Comments:
      Erratum in: Appl Biochem Biotechnol. 2021 Oct 7;:. (PMID: 34618339)
    • References:
      Sefah, K., Shangguan, D., Xiong, X., O'Donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature protocols, 5(6), 1169–1185. https://doi.org/10.1038/nprot.2010.66 . (PMID: 10.1038/nprot.2010.6620539292)
      Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, N.Y.), 249(4968), 505–510. https://doi.org/10.1126/science.2200121 . (PMID: 10.1126/science.2200121)
      Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822. https://doi.org/10.1038/346818a0 . (PMID: 10.1038/346818a01697402)
      Quang, N. N., Miodek, A., Cibiel, A., & Ducongé, F. (2017). Selection of aptamers against whole living cells: From Cell-SELEX to identification of biomarkers. Methods in molecular biology (Clifton, N.J.), 1575, 253–272. https://doi.org/10.1007/978-1-4939-6857-216 .
      Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 13(12), 4279–4295. https://doi.org/10.1091/mbc.e02-02-0105 . (PMID: 10.1091/mbc.e02-02-010512475952138633)
      Zuk, P. (2013). Adipose-Derived Stem Cells in Tissue Regeneration: A Review. Int Sch Res Not, 2013, e713959–e713935. https://doi.org/10.1155/2013/713959 . (PMID: 10.1155/2013/713959)
      Pereira, M. C., Secco, M., Suzuki, D. E., Janjoppi, L., Rodini, C. O., Torres, L. B., Araújo, B. H., Cavalheiro, E. A., Zatz, M., & Okamoto, O. K. (2011). Contamination of mesenchymal stem-cells with fibroblasts accelerates neurodegeneration in an experimental model of Parkinson's disease. Stem cell reviews and reports, 7(4), 1006–1017. https://doi.org/10.1007/s12015-011-9256-4 . (PMID: 10.1007/s12015-011-9256-421503590)
      Halfon, S., Abramov, N., Grinblat, B., & Ginis, I. (2011). Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem cells and development, 20(1), 53–66. https://doi.org/10.1089/scd.2010.0040 . (PMID: 10.1089/scd.2010.004020528146)
      Kundrotas, G. (2012). Surface markers distinguishing mesenchymal stem cells from fibroblastos. Acta medica Lituanica, 19(2), 75–79. https://doi.org/10.6001/actamedica.v19i2.2313 . (PMID: 10.6001/actamedica.v19i2.2313)
      Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006 . (PMID: 10.1016/j.jcyt.2013.02.006235706603979435)
      Flavell, S. J., Hou, T. Z., Lax, S., Filer, A. D., Salmon, M., & Buckley, C. D. (2008). Fibroblasts as novel therapeutic targets in chronic inflammation. British journal of pharmacology, 153 Suppl, 1(Suppl 1), S241–S246. https://doi.org/10.1038/sj.bjp.0707487 . (PMID: 10.1038/sj.bjp.0707487)
      Soundararajan, M., & Kannan, S. (2018). Fibroblasts and mesenchymal stem cells: Two sides of the same coin? Journal of cellular physiology, 233(12), 9099–9109. https://doi.org/10.1002/jcp.26860 . (PMID: 10.1002/jcp.2686029943820)
      Alt, E., Yan, Y., Gehmert, S., Song, Y. H., Altman, A., Gehmert, S., Vykoukal, D., & Bai, X. (2011). Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biology of the cell, 103(4), 197–208. https://doi.org/10.1042/BC20100117 . (PMID: 10.1042/BC2010011721332447)
      Denu, R. A., Nemcek, S., Bloom, D. D., Goodrich, A. D., Kim, J., Mosher, D. F., & Hematti, P. (2016). Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta haematologica, 136(2), 85–97. https://doi.org/10.1159/000445096 . (PMID: 10.1159/00044509627188909)
      Ardjomandi, N., Niederlaender, J., Aicher, W. K., Reinert, S., Schweizer, E., Wendel, H. P., & Alexander, D. (2013). Identification of an aptamer binding to human osteogenic-induced progenitor cells. Nucleic acid therapeutics, 23(1), 44–61. https://doi.org/10.1089/nat.2012.0349 . (PMID: 10.1089/nat.2012.0349232895343696924)
      Ueki, R., Atsuta, S., Ueki, A., Hoshiyama, J., Li, J., Hayashi, Y., & Sando, S. (2019). DNA aptamer assemblies as fibroblast growth factor mimics and their application in stem cell culture. Chemical communications (Cambridge, England), 55(18), 2672–2675. https://doi.org/10.1039/c8cc08080a . (PMID: 10.1039/c8cc08080a)
      Hou, Z., Meyer, S., Propson, N. E., Nie, J., Jiang, P., Stewart, R., & Thomson, J. A. (2015). Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell research, 25(3), 390–393. https://doi.org/10.1038/cr.2015.7 . (PMID: 10.1038/cr.2015.7255919274349250)
      Wang, M., Wu, H., Li, Q., Yang, Y., Che, F., Wang, G., & Zhang, L. (2019). Novel aptamer-functionalized nanoparticles enhances bone defect repair by improving stem cell recruitment. International journal of nanomedicine, 14, 8707–8724. https://doi.org/10.2147/IJN.S223164 . (PMID: 10.2147/IJN.S223164318069666847998)
      Wang, X., Song, X., Li, T., Chen, J., Cheng, G., Yang, L., & Chen, C. (2019). Aptamer-functionalized bioscaffold enhances cartilage repair by improving stem cell recruitment in osteochondral defects of rabbit knees. The American Journal of Sports Medicine, 47(10), 2316–2326. https://doi.org/10.1177/0363546519856355 . (PMID: 10.1177/036354651985635531233332)
      Abreu de Melo, M. I., da Silva Cunha, P., Coutinho de Miranda, M., Faraco, C., Barbosa, J. L., da Fonseca Ferreira, A., Kunrath Lima, M., Faria, J., Rodrigues, M. Â., de Goes, A. M., & Gomes, D. A. (2021). Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell biochemistry and function. https://doi.org/10.1002/cbf.3610.Advanceonlinepublication .
      Graziani, A. C., Stets, M. I., Lopes, A. L. K., Stets, M. I., Lopes, A. L. K., Schluga, P. H. C., Marton, S., Mendes, I. F., Andrade, A. S. R. ., Krieger, M. A., & Cardoso, J. (2017). High efficiency binding aptamers for a wide range of bacterial sepsis agents. J Microbiol Biotechnol, 27(4), 838–843. https://doi.org/10.4014/jmb.1611.11004 . (PMID: 10.4014/jmb.1611.1100428119514)
      Thiel, W. H., Bair, T., Peek, A. S., Liu, X., Dassie, J., Stockdale, K. R., Behlke, M. A., Miller Jr., F. J., & Giangrande, P. H. (2012). Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection. PloS one, 7(9), e43836. https://doi.org/10.1371/journal.pone.0043836 . (PMID: 10.1371/journal.pone.0043836229625913433472)
      Mencin, N., Šmuc, T., Vraničar, M., Mavri, J., Hren, M., Galeša, K., Krkoč, P., Ulrich, H., & Šolar, B. (2014). Optimization of SELEX: Comparison of different methods for monitoring the progress of in vitro selection of aptamers. Journal of pharmaceutical and biomedical analysis, 91, 151–159. https://doi.org/10.1016/j.jpba.2013.12.031 . (PMID: 10.1016/j.jpba.2013.12.03124463043)
      Thiel, W. H. (2016). Galaxy workflows for web-based bioinformatics analysis of aptamer high-throughput sequencing data. Molecular therapy. Nucleic acids, 5(8), e345. https://doi.org/10.1038/mtna.2016.54 . (PMID: 10.1038/mtna.2016.54281312865023399)
      Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 . (PMID: 10.1093/oxfordjournals.molbev.a0404543447015)
      Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 . (PMID: 10.1093/molbev/msy096297228875967553)
      Liu, W., & Saint, D. A. (2002). A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical biochemistry, 302(1), 52–59. https://doi.org/10.1006/abio.2001.5530 . (PMID: 10.1006/abio.2001.553011846375)
      Cikos, S., Bukovská, A., & Koppel, J. (2007). Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC molecular biology, 8(1), 113. https://doi.org/10.1186/1471-2199-8-113 . (PMID: 10.1186/1471-2199-8-113180933442235892)
      Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29(9), 45e–445e. https://doi.org/10.1093/nar/29.9.e45 .
      Mariane Izabella Abreu de Melo., Rodrigues Correa, C., da Silva Cunha, P., Alfredo Miranda de Góes., Assis Gomes, D., & Antero Silva Ribeiro de Andrade. (2020). DNA aptamers selection for carcinoembryonic antigen (CEA). Bioorganic & medicinal chemistry letters, 30(15), 127278. https://doi.org/10.1016/j.bmcl.2020.127278.
      Souza, A. G., Marangoni, K., Fujimura, P. T., Alves, P. T., Silva, M. J., Bastos, V. A., Goulart, L. R., & Goulart, V. A. (2016). 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Experimental cell research, 341(2), 147–156. https://doi.org/10.1016/j.yexcr.2016.01.015 . (PMID: 10.1016/j.yexcr.2016.01.01526821206)
      Vidic, M., Smuc, T., Janez, N., Blank, M., Accetto, T., Mavri, J., Nascimento, I. C., Nery, A. A., Ulrich, H., & Lah, T. T. (2018). In silico selection approach to develop DNA aptamers for a stem-like cell subpopulation of non-small lung cancer adenocarcinoma cell line A549. Radiology and oncology, 52(2), 152–159. https://doi.org/10.2478/raon-2018-0014 . (PMID: 10.2478/raon-2018-0014300185186043879)
      Nascimento, I. C., Nery, A. A., Bassaneze, V., Krieger, J. E., & Ulrich, H. (2016). Applications of aptamers in flow and imaging cytometry. Methods in molecular biology (Clifton, N.J.), 1380, 127–134. https://doi.org/10.1007/978-1-4939-3197-210 .
      Avci-Adali, M., Wilhelm, N., Perle, N., Stoll, H., Schlensak, C., & Wendel, H. P. (2013). Absolute quantification of cell-bound DNA aptamers during SELEX. Nucleic acid therapeutics, 23(2), 125–130. https://doi.org/10.1089/nat.2012.0406 . (PMID: 10.1089/nat.2012.040623405949)
      Li, H. H., Wen, C. Y., Hong, C. Y., & Lai, J. C. (2017). Evaluation of aptamer specificity with or without primers using clinical samples for C-reactive protein by magnetic-assisted rapid aptamer selection. RSC Adv, 7(68), 42856–42865. https://doi.org/10.1039/c7ra07249j . (PMID: 10.1039/c7ra07249j)
      Fish, K. N. (2009). Total internal reflection fluorescence (TIRF) microscopy. Current protocols in cytometry, Chapter 12, Unit12.18, 50(1). https://doi.org/10.1002/0471142956.cy1218s50 .
      Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., & Yanagida, T. (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374(6522), 555–559. https://doi.org/10.1038/374555a0 . (PMID: 10.1038/374555a07700383)
      Liu, K., Lin, B., & Lan, X. (2013). Aptamers: A promising tool for cancer imaging, diagnosis, and therapy. Journal of cellular biochemistry, 114(2), 250–255. https://doi.org/10.1002/jcb.24373 . (PMID: 10.1002/jcb.2437322949372)
      Berezovski, M. V., Lechmann, M., Musheev, M. U., Mak, T. W., & Krylov, S. N. (2008). Aptamer-facilitated biomarker discovery (AptaBiD). Journal of the American Chemical Society, 130(28), 9137–9143. https://doi.org/10.1021/ja801951p . (PMID: 10.1021/ja801951p18558676)
    • Contributed Indexing:
      Keywords: Cell-SELEX; DNA aptamers; Human adipose-derived stem cells; Human dermal fibroblasts; Quantitative PCR assay
    • الرقم المعرف:
      0 (Aptamers, Nucleotide)
    • الموضوع:
      Date Created: 20210807 Date Completed: 20220117 Latest Revision: 20220212
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s12010-021-03618-5
    • الرقم المعرف:
      34363139