Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Koh DW;Koh DW; Kwon JK; Kwon JK; Lee SG; Lee SG
  • المصدر:
    Sensors (Basel, Switzerland) [Sensors (Basel)] 2021 Jul 05; Vol. 21 (13). Date of Electronic Publication: 2021 Jul 05.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101204366 Publication Model: Electronic Cited Medium: Internet ISSN: 1424-8220 (Electronic) Linking ISSN: 14248220 NLM ISO Abbreviation: Sensors (Basel) Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Basel, Switzerland : MDPI, c2000-
    • الموضوع:
    • نبذة مختصرة :
      Elderly people are not likely to recognize road signs due to low cognitive ability and presbyopia. In our study, three shapes of traffic symbols (circles, squares, and triangles) which are most commonly used in road driving were used to evaluate the elderly drivers' recognition. When traffic signs are randomly shown in HUD (head-up display), subjects compare them with the symbol displayed outside of the vehicle. In this test, we conducted a Go/Nogo test and determined the differences in ERP (event-related potential) data between correct and incorrect answers of EEG signals. As a result, the wrong answer rate for the elderly was 1.5 times higher than for the youths. All generation groups had a delay of 20-30 ms of P300 with incorrect answers. In order to achieve clearer differentiation, ERP data were modeled with unsupervised machine learning and supervised deep learning. The young group's correct/incorrect data were classified well using unsupervised machine learning with no pre-processing, but the elderly group's data were not. On the other hand, the elderly group's data were classified with a high accuracy of 75% using supervised deep learning with simple signal processing. Our results can be used as a basis for the implementation of a personalized safe driving system for the elderly.
    • References:
      J Cogn Neurosci. 1998 Nov;10(6):717-33. (PMID: 9831740)
      J Neural Eng. 2019 Feb;16(1):016008. (PMID: 30507557)
      IEEE Trans Biomed Eng. 2008 Jun;55(6):1754-63. (PMID: 18714840)
      IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. (PMID: 16562628)
      J Exp Psychol Learn Mem Cogn. 2001 Jan;27(1):202-24. (PMID: 11204098)
      IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):121-30. (PMID: 18403280)
      Optom Vis Sci. 1999 Mar;76(3):141-58. (PMID: 10213444)
      Electroencephalogr Clin Neurophysiol. 1978 Apr;44(4):447-58. (PMID: 76553)
      Exp Aging Res. 1984 Winter;10(4):201-4. (PMID: 6535733)
      Int J Med Sci. 2005;2(4):147-54. (PMID: 16239953)
      J Cogn Neurosci. 2009 Oct;21(10):1882-92. (PMID: 18823240)
      Neurosci Lett. 2010 Nov 12;485(1):43-8. (PMID: 20801188)
      Psychophysiology. 2008 Jan;45(1):152-70. (PMID: 17850238)
      Accid Anal Prev. 1998 Mar;30(2):151-9. (PMID: 9450119)
      Brain Lang. 1999 Jan;66(1):108-28. (PMID: 10080867)
      Psychophysiology. 1996 Jul;33(4):334-53. (PMID: 8753933)
      PLoS One. 2014 Feb 13;9(2):e87347. (PMID: 24551055)
      Brain Res. 2008 Jan 16;1189:127-34. (PMID: 18053974)
      Brain Cogn. 2010 Dec;74(3):312-23. (PMID: 20875697)
    • Contributed Indexing:
      Keywords: brain computer interface; elderly drivers; electroencephalogram; traffic sign recognition
    • الموضوع:
      Date Created: 20210720 Date Completed: 20210722 Latest Revision: 20210723
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC8271893
    • الرقم المعرف:
      10.3390/s21134607
    • الرقم المعرف:
      34283150