Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Changes in soil mesofauna structure due to different land use systems in south Minas Gerais, Brazil.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      Essential to the provision of important ecosystems services, i.e., food production, soil is suffering great pressure. The degradation of natural areas in order to turn them into croplands has been causing severe effects to the soil quality, including the maintenance of their biodiversity. Soil physical disruption reduce the soil biodiversity and, consequently, may cause negative effects to the supporting services, i.e., organic matter degradation and nutrient cycling, which will directly or indirectly impact agroecosystems. In this study, the influence of three different types of land uses (native forest (NF), conventional agriculture (CA), and organic agriculture (OA)) to the soil mesofauna (emphasizing collembolan and mites) were assessed under real scenarios in the southeast part of Brazil. Both conventional and organic fields were of strawberries, and the greatest difference in their processes was the use of synthetic fertilizers and pesticides, performed at CA. Soil fauna organisms were collected and identified to main groups, except the collembolan species which were further separated into four main groups/family. Results showed that not only the physical changes due to soil tillage caused negative effects to soil fauna. In the field where the use of agricultural products was allowed, organisms were much more severely affected. Hence, the conversion of natural forested areas to agricultural lands may harm soil fauna communities through biodiversity loss. This study not only adds significant information to the knowledge regarding the relation between biodiversity loss and agricultural practices worldwide, but it also helps to improve Brazilian knowledge of the edaphic fauna in agroecosystems.
    • References:
      Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., & Barriuso, E. (2010). Tillage management effects on pesticide fate in soils. A Review. Agronomy for Sustainable Development, 30(2), 367–400. https://doi.org/10.1051/agro/2009018. (PMID: 10.1051/agro/2009018)
      Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Gonçalves, J. L. M., & Sparovek, G. (2014). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. (PMID: 10.1127/0941-2948/2013/0507)
      Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6,(52).  https://doi.org/10.1525/elementa.310.
      Brennan, A., Fortune, T., & Bolger, T. (2006). Collembola Abundances and Assemblage Structures in Conventionally Tilled and Conservation Tillage Arable Systems, 50, 135–145. https://doi.org/10.1016/j.pedobi.2005.09.004. (PMID: 10.1016/j.pedobi.2005.09.004)
      Brigante, J., da Costa, J. N. M. N., Mendonça, A. H., & Espíndola, E. L. G. (2007). Ações de Restauração Florestal: Valorização dos Recursos Florestais da Bacia Hidrográfica de Montante do Rio Mogi-Guaçu. In Projeto Mogi-Guaçu: Desenvolvendo Ações Ambientais. São Carlos: RiMa editora.
      Chelinho, S., Domene, X., Andrés, P., Natal-da-Luz, T., Norte, C., Rufino, C., et al. (2013). Soil microarthropod community testing: A new approach to increase the ecological relevance of effect data for pesticide risk assessment. Applied Soil Ecology, 200–209.  https://doi.org/10.1016/j.apsoil.2013.06.009.
      Cunha, G. D. P. Q. (2009). Caracterização ambiental da região de montante do rio Mogi-Guaçu ( Bom Repouso - MG ): estratégias para replicabilidade e diretrizes para elaboração do plano de adequação ambiental. Universidade de São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/18/18139/tde-13112009-133602/pt-br.php.
      Dekemati, I., Simon, B., Vinogradov, S., & Birkás, M. (2019). The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil & Tillage Research, 194, 104334. https://doi.org/10.1016/j.still.2019.104334. (PMID: 10.1016/j.still.2019.104334)
      ELD Initiative. (2015). Report for policy and decision makers: Reaping economic and environmental benefits from sustainable land management. https://www.eld-initiative.org/fileadmin/pdf/ELD-pm-report_08_web_72dpi.pdf.
      Ferreira, C. R., Souza, R. C., Correia, M. E. F., Resende, A. S. de, Anjos, L. H. C. dos, & Pereira, M. G. (2017). Edaphic arthropods in different successional stages of Atlantic forest and abandoned pasture areas. Comunicata Scientiae, 8, 296–306.
      Frampton GK, Jansch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ. Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem. 2006 Sep;25(9):2480-9. https://doi.org/10.1897/05-438r.1 . PMID: 16986804.
      Gisin, H. (1960). Collembolenfauna Europas. Museum d’histoire naturelle Geneva, Switzerland.
      Guo, Y., Fan, R., Zhang, X., Zhang, Y., Wu, D., Mclaughlin, N., et al. (2020). Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Science of the Total Environment, 703.  https://doi.org/10.1016/j.scitotenv.2019.134617.
      IPBES. (2018). Worsening Worldwide Land Degradation Now ‘Critical’, Undermining Well-Being of 3.2 Billion People. https://ipbes.net/news/media-release-worsening-worldwide-land-degradation-now-‘critical’-undermining-well-being-32 . Accessed 3 March 2020.
      Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/J.ENVINT.2019.105078. (PMID: 10.1016/J.ENVINT.2019.105078)
      Lavelle, P. (1997). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27(27), 93–132. (PMID: 10.1016/S0065-2504(08)60007-0)
      Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42(Supplement 1), S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002.
      Liiri, M., Hasa, M., Haimi, J., & Setala, H. (2012). History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services—A microcosm study. Applied Soil Ecology, 55, 53–61. https://doi.org/10.1016/j.apsoil.2011.12.009. (PMID: 10.1016/j.apsoil.2011.12.009)
      Lima, K. D. R., Camara, R., Chaer, G. M., Pereira, M. G., & Resende, A. S. (2017). Soil fauna as bioindicator of recovery of degraded areas in the Caatinga biome. Revista Caatinga, 30, 401–411. (PMID: 10.1590/1983-21252017v30n215rc)
      Macfadyen, A. (1961). Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology, 30(1), 171–184. https://doi.org/10.2307/2120. (PMID: 10.2307/2120)
      Menezes-Oliveira, V. B., Bianchi, M. D. O., & Espíndola, E. L. G. (2018). Hazard assessment of the pesticides Kraft 36 EC and score in a tropical natural soil using an ecotoxicological test battery, 9999(9999), 1–6. https://doi.org/10.1002/etc.4056.
      Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50. https://doi.org/10.1038/nature14324. (PMID: 10.1038/nature14324)
      Nunes, M. E. T. (2010). Avaliação dos efeitos de agrotóxicos sobre a fauna edáfica por meio de ensaios ecotoxicológicos com Eisenia andrei (Annelida, Oligochaeta) e com comunidade natural do solo. Universidade de São Paulo, São Paulo. (PMID: 10.11606/T.18.2010.tde-24012011-140524)
      Nunes, M. E. T., Daam, M. A., & Espíndola, E. L. G. (2016). Survival, morphology and reproduction of Eisenia andrei (Annelida, Oligochaeta) as affected by Vertimec® 18 EC (a.i. abamectin) in tests performed under tropical conditions. Applied Soil Ecology, 100(December), 18–26. https://doi.org/10.1016/j.apsoil.2015.11.023.
      Oliveira Filho, L. C. I., Klauberg Filho, O., Baretta, D., Tanaka, C. A. S., & Sousa, J. P. (2016). Collembola community structure as a tool to assess land use effects on soil quality. Revista Brasileira De Ciencia Do Solo, 40, 1–18. https://doi.org/10.1590/18069657rbcs20150432 . (PMID: 10.1590/18069657rbcs20150432)
      Pielou, E. C. (2006, August 15). Diversity indices. Encyclopedia of Statistical Sciences. https://doi.org/10.1002/0471667196.ess0516.pub2.
      Ponge, J. F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32(6), 508–522. https://doi.org/10.1007/s003740000285. (PMID: 10.1007/s003740000285)
      Schnug, L., Jensen, L., Scott-Fordsmand, J. J., Leinaas, H. P. (2014). Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. Soil Biology and Biochemistry, 115–126.  https://doi.org/10.1016/j.soilbio.2014.03.007.
      Silva, R. A., Aguiar, A. C. F., Rebêlo, J. M. M., Silva, E. F. F., Da Silva, G. F., & Siqueira, G. M. (2019). Diversity of edaphic fauna in different soil occupation systems. Revista Caatinga, 32(3), 647–657. https://doi.org/10.1590/1983-21252019v32n309rc.
      Sousa, J. P., Bolger, T., da Gama, M. M., Lukkari, T., Ponge, J. F., Simon, C., et al. (2006). Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia, 50(2), 147–156. https://doi.org/10.1016/j.pedobi.2005.10.005. (PMID: 10.1016/j.pedobi.2005.10.005)
      Stehfest, E., van Zeist, W. J., Valin, H., et al. (2019). Key determinants of global land-use projections. Nature Communications, 10, 2166. https://doi.org/10.1038/s41467-019-09945-w. (PMID: 10.1038/s41467-019-09945-w)
      Turbé, A., Toni, A., Benito, P., Lavelle, P., Lavelle, P., Camacho, N. R., Putten, W. H. Van Der, et al. (2010). Soil biodiversity : Functions , threats and tools for policy makers To cite this version : European Commission DG ENV Soil biodiversity : functions , threats and. https://hal-bioemco.ccsd.cnrs.fr/bioemco-00560420.
      Vandewalle, M., de Bello, F., Berg, M. P., Bolger, T., Doledec, S., Dubs, F., et al. (2010). Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, 19(10), 2921–2947. https://doi.org/10.1007/s10531-010-9798-9. (PMID: 10.1007/s10531-010-9798-9)
      Wagg, C., Bender, S. F., Widmer, F., & Van Der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111. (PMID: 10.1073/pnas.1320054111)
      Watson, R. T., Rosswall, T., Steiner, A., Töpfer, K., Arico, S., & Bridgewater, P. (2005). Ecosystems AND HUMAN WELL-BEING. Ecosystems, 5(281), 1–100. https://doi.org/10.1196/annals.1439.003. (PMID: 10.1196/annals.1439.003)
      Winck, B. R., Sá, E. L. S., Rigotti, V. M., & Chauvat, M. (2017). Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology, 109, 49–59. https://doi.org/10.1016/j.apsoil.2016.09.021. (PMID: 10.1016/j.apsoil.2016.09.021)
      Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M. P., Schmidt, A., et al. (2019). Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology and Biochemistry, 138, 107598. https://doi.org/10.1016/J.SOILBIO.2019.107598. (PMID: 10.1016/J.SOILBIO.2019.107598)
    • Contributed Indexing:
      Keywords: Collembolan; Land use intensification; Soil management; Soil mesofauna; Terrestrial ecotoxicology
    • الرقم المعرف:
      0 (Soil)
    • الموضوع:
      Date Created: 20210621 Date Completed: 20210622 Latest Revision: 20210622
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s10661-021-09214-8
    • الرقم المعرف:
      34151380