References: Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., & Barriuso, E. (2010). Tillage management effects on pesticide fate in soils. A Review. Agronomy for Sustainable Development, 30(2), 367–400. https://doi.org/10.1051/agro/2009018. (PMID: 10.1051/agro/2009018)
Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Gonçalves, J. L. M., & Sparovek, G. (2014). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. (PMID: 10.1127/0941-2948/2013/0507)
Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6,(52). https://doi.org/10.1525/elementa.310.
Brennan, A., Fortune, T., & Bolger, T. (2006). Collembola Abundances and Assemblage Structures in Conventionally Tilled and Conservation Tillage Arable Systems, 50, 135–145. https://doi.org/10.1016/j.pedobi.2005.09.004. (PMID: 10.1016/j.pedobi.2005.09.004)
Brigante, J., da Costa, J. N. M. N., Mendonça, A. H., & Espíndola, E. L. G. (2007). Ações de Restauração Florestal: Valorização dos Recursos Florestais da Bacia Hidrográfica de Montante do Rio Mogi-Guaçu. In Projeto Mogi-Guaçu: Desenvolvendo Ações Ambientais. São Carlos: RiMa editora.
Chelinho, S., Domene, X., Andrés, P., Natal-da-Luz, T., Norte, C., Rufino, C., et al. (2013). Soil microarthropod community testing: A new approach to increase the ecological relevance of effect data for pesticide risk assessment. Applied Soil Ecology, 200–209. https://doi.org/10.1016/j.apsoil.2013.06.009.
Cunha, G. D. P. Q. (2009). Caracterização ambiental da região de montante do rio Mogi-Guaçu ( Bom Repouso - MG ): estratégias para replicabilidade e diretrizes para elaboração do plano de adequação ambiental. Universidade de São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/18/18139/tde-13112009-133602/pt-br.php.
Dekemati, I., Simon, B., Vinogradov, S., & Birkás, M. (2019). The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil & Tillage Research, 194, 104334. https://doi.org/10.1016/j.still.2019.104334. (PMID: 10.1016/j.still.2019.104334)
ELD Initiative. (2015). Report for policy and decision makers: Reaping economic and environmental benefits from sustainable land management. https://www.eld-initiative.org/fileadmin/pdf/ELD-pm-report_08_web_72dpi.pdf.
Ferreira, C. R., Souza, R. C., Correia, M. E. F., Resende, A. S. de, Anjos, L. H. C. dos, & Pereira, M. G. (2017). Edaphic arthropods in different successional stages of Atlantic forest and abandoned pasture areas. Comunicata Scientiae, 8, 296–306.
Frampton GK, Jansch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ. Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem. 2006 Sep;25(9):2480-9. https://doi.org/10.1897/05-438r.1 . PMID: 16986804.
Gisin, H. (1960). Collembolenfauna Europas. Museum d’histoire naturelle Geneva, Switzerland.
Guo, Y., Fan, R., Zhang, X., Zhang, Y., Wu, D., Mclaughlin, N., et al. (2020). Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.134617.
IPBES. (2018). Worsening Worldwide Land Degradation Now ‘Critical’, Undermining Well-Being of 3.2 Billion People. https://ipbes.net/news/media-release-worsening-worldwide-land-degradation-now-‘critical’-undermining-well-being-32 . Accessed 3 March 2020.
Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/J.ENVINT.2019.105078. (PMID: 10.1016/J.ENVINT.2019.105078)
Lavelle, P. (1997). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27(27), 93–132. (PMID: 10.1016/S0065-2504(08)60007-0)
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42(Supplement 1), S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002.
Liiri, M., Hasa, M., Haimi, J., & Setala, H. (2012). History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services—A microcosm study. Applied Soil Ecology, 55, 53–61. https://doi.org/10.1016/j.apsoil.2011.12.009. (PMID: 10.1016/j.apsoil.2011.12.009)
Lima, K. D. R., Camara, R., Chaer, G. M., Pereira, M. G., & Resende, A. S. (2017). Soil fauna as bioindicator of recovery of degraded areas in the Caatinga biome. Revista Caatinga, 30, 401–411. (PMID: 10.1590/1983-21252017v30n215rc)
Macfadyen, A. (1961). Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology, 30(1), 171–184. https://doi.org/10.2307/2120. (PMID: 10.2307/2120)
Menezes-Oliveira, V. B., Bianchi, M. D. O., & Espíndola, E. L. G. (2018). Hazard assessment of the pesticides Kraft 36 EC and score in a tropical natural soil using an ecotoxicological test battery, 9999(9999), 1–6. https://doi.org/10.1002/etc.4056.
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50. https://doi.org/10.1038/nature14324. (PMID: 10.1038/nature14324)
Nunes, M. E. T. (2010). Avaliação dos efeitos de agrotóxicos sobre a fauna edáfica por meio de ensaios ecotoxicológicos com Eisenia andrei (Annelida, Oligochaeta) e com comunidade natural do solo. Universidade de São Paulo, São Paulo. (PMID: 10.11606/T.18.2010.tde-24012011-140524)
Nunes, M. E. T., Daam, M. A., & Espíndola, E. L. G. (2016). Survival, morphology and reproduction of Eisenia andrei (Annelida, Oligochaeta) as affected by Vertimec® 18 EC (a.i. abamectin) in tests performed under tropical conditions. Applied Soil Ecology, 100(December), 18–26. https://doi.org/10.1016/j.apsoil.2015.11.023.
Oliveira Filho, L. C. I., Klauberg Filho, O., Baretta, D., Tanaka, C. A. S., & Sousa, J. P. (2016). Collembola community structure as a tool to assess land use effects on soil quality. Revista Brasileira De Ciencia Do Solo, 40, 1–18. https://doi.org/10.1590/18069657rbcs20150432 . (PMID: 10.1590/18069657rbcs20150432)
Pielou, E. C. (2006, August 15). Diversity indices. Encyclopedia of Statistical Sciences. https://doi.org/10.1002/0471667196.ess0516.pub2.
Ponge, J. F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32(6), 508–522. https://doi.org/10.1007/s003740000285. (PMID: 10.1007/s003740000285)
Schnug, L., Jensen, L., Scott-Fordsmand, J. J., Leinaas, H. P. (2014). Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. Soil Biology and Biochemistry, 115–126. https://doi.org/10.1016/j.soilbio.2014.03.007.
Silva, R. A., Aguiar, A. C. F., Rebêlo, J. M. M., Silva, E. F. F., Da Silva, G. F., & Siqueira, G. M. (2019). Diversity of edaphic fauna in different soil occupation systems. Revista Caatinga, 32(3), 647–657. https://doi.org/10.1590/1983-21252019v32n309rc.
Sousa, J. P., Bolger, T., da Gama, M. M., Lukkari, T., Ponge, J. F., Simon, C., et al. (2006). Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia, 50(2), 147–156. https://doi.org/10.1016/j.pedobi.2005.10.005. (PMID: 10.1016/j.pedobi.2005.10.005)
Stehfest, E., van Zeist, W. J., Valin, H., et al. (2019). Key determinants of global land-use projections. Nature Communications, 10, 2166. https://doi.org/10.1038/s41467-019-09945-w. (PMID: 10.1038/s41467-019-09945-w)
Turbé, A., Toni, A., Benito, P., Lavelle, P., Lavelle, P., Camacho, N. R., Putten, W. H. Van Der, et al. (2010). Soil biodiversity : Functions , threats and tools for policy makers To cite this version : European Commission DG ENV Soil biodiversity : functions , threats and. https://hal-bioemco.ccsd.cnrs.fr/bioemco-00560420.
Vandewalle, M., de Bello, F., Berg, M. P., Bolger, T., Doledec, S., Dubs, F., et al. (2010). Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, 19(10), 2921–2947. https://doi.org/10.1007/s10531-010-9798-9. (PMID: 10.1007/s10531-010-9798-9)
Wagg, C., Bender, S. F., Widmer, F., & Van Der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111. (PMID: 10.1073/pnas.1320054111)
Watson, R. T., Rosswall, T., Steiner, A., Töpfer, K., Arico, S., & Bridgewater, P. (2005). Ecosystems AND HUMAN WELL-BEING. Ecosystems, 5(281), 1–100. https://doi.org/10.1196/annals.1439.003. (PMID: 10.1196/annals.1439.003)
Winck, B. R., Sá, E. L. S., Rigotti, V. M., & Chauvat, M. (2017). Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology, 109, 49–59. https://doi.org/10.1016/j.apsoil.2016.09.021. (PMID: 10.1016/j.apsoil.2016.09.021)
Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M. P., Schmidt, A., et al. (2019). Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology and Biochemistry, 138, 107598. https://doi.org/10.1016/J.SOILBIO.2019.107598. (PMID: 10.1016/J.SOILBIO.2019.107598)
No Comments.