Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Strategies for enhancing terpenoids accumulation in microalgae.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin ; New York : Springer International, c1984-
    • الموضوع:
    • نبذة مختصرة :
      Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of β-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.
    • References:
      Aburai N, Abe K (2015) Metabolic switching: synergistic induction of carotenogenesis in the aerial microalga, Vischeria helvetica, under environmental stress conditions by inhibitors of fatty acid biosynthesis. Biotechnol Lett 37(5):1073–1080. https://doi.org/10.1007/s10529-015-1770-z. (PMID: 10.1007/s10529-015-1770-z25820338)
      Agarwal A, Patil S, Gharat K, Pandit RA, Lali AM (2019) Modulation in light utilization by a microalga Asteracys sp. under mixotrophic growth regimes. Photosynth Res 139(1-3):553–567. https://doi.org/10.1007/s11120-018-0526-8. (PMID: 10.1007/s11120-018-0526-829860703)
      Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr 59(12):1880–1902. https://doi.org/10.1080/10408398.2018.1432561. (PMID: 10.1080/10408398.2018.143256129370540)
      Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R (2015) Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynth Res 127(3):321–333. https://doi.org/10.1007/s11120-015-0188-8. (PMID: 10.1007/s11120-015-0188-826334599)
      Athanasakoglou A, Kampranis SC (2019) Diatom isoprenoids: advances and biotechnological potential. Biotechnol Adv 37(8):107417. https://doi.org/10.1016/j.biotechadv.2019.107417. (PMID: 10.1016/j.biotechadv.2019.10741731326522)
      Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621–1634. https://doi.org/10.1016/j.biochi.2012.03.021. (PMID: 10.1016/j.biochi.2012.03.02122503704)
      Block AK, Vaughan MM, Schmelz EA, Christensen SA (2019) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249(1):21–30. https://doi.org/10.1007/s00425-018-2999-2. (PMID: 10.1007/s00425-018-2999-230187155)
      Bohn T, Desmarchelier C, El SN, Keijer J, Schothorst EV, Rühl R, Borel P (2019) β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 78(1):68–87. https://doi.org/10.1017/S0029665118002641. (PMID: 10.1017/S002966511800264130747092)
      Bonnefond H, Moelants N, Talec A, Mayzaud P, Bernard O, Sciandra A (2017) Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol Biofuels 10:25. https://doi.org/10.1186/s13068-017-0713-4. (PMID: 10.1186/s13068-017-0713-4281637825282863)
      Borisova-Mubarakshina MM, Vetoshkina DV, Ivanov BN (2019) Antioxidant and signaling functions of the plastoquinone pool in higher plants. Physiol Plant 166(1):181–198. https://doi.org/10.1111/ppl.12936. (PMID: 10.1111/ppl.1293630706486)
      Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91(1):31–46. https://doi.org/10.1007/s00253-011-3311-6. (PMID: 10.1007/s00253-011-3311-6215671793114082)
      Burg JS, Espenshade PJ (2011) Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 50(4):403–410. https://doi.org/10.1016/j.plipres.2011.07.002. (PMID: 10.1016/j.plipres.2011.07.002218017483184313)
      Cezare-Gomes EA, Mejia-da-Silva LDC, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, de Carvalho JCM (2019) Potential of microalgae carotenoids for industrial application. Appl Biochem Biotechnol 188(3):602–634. https://doi.org/10.1007/s12010-018-02945-4. (PMID: 10.1007/s12010-018-02945-430613862)
      Chen CY, Liu CC (2018) Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresour Technol 262:74–79. https://doi.org/10.1016/j.biortech.2018.04.024. (PMID: 10.1016/j.biortech.2018.04.02429698840)
      Chen L, Zhang L, Liu T (2016) Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum. Bioresour Technol 214:567–573. https://doi.org/10.1016/j.biortech.2016.05.017. (PMID: 10.1016/j.biortech.2016.05.01727179952)
      Choi YE, Rhee JK, Kim HS, Ahn JW, Hwang H, Yang JW (2015) Chemical genetics approach reveals importance of cAMP and MAP kinase signaling to lipid and carotenoid biosynthesis in microalgae. J Microbiol Biotechnol 25(5):637–647. https://doi.org/10.4014/jmb.1408.08035. (PMID: 10.4014/jmb.1408.0803525563422)
      Choi SY, Woo HM (2020) CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in Cyanobacteria. ACS Synth Biol 9(9):2351–2361. https://doi.org/10.1021/acssynbio.0c00091. (PMID: 10.1021/acssynbio.0c0009132379967)
      Clomburg JM, Qian S, Tan Z, Cheong S, Gonzalez R (2019) The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci U S A 116(26):12810–12815. https://doi.org/10.1073/pnas.1821004116. (PMID: 10.1073/pnas.1821004116311863576600936)
      Cordoba E, Porta H, Arroyo A, San Román C, Medina L, Rodríguez-Concepción M, León P (2011) Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot 62(6):2023–2038. https://doi.org/10.1093/jxb/erq393. (PMID: 10.1093/jxb/erq39321199890)
      Dahmen-Ben MI, Chtourou H, Karray F, Sayadi S, Dhouib A (2017) Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Bioresour Technol 238:325–332. https://doi.org/10.1016/j.biortech.2017.04.008. (PMID: 10.1016/j.biortech.2017.04.008)
      Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123(3):265–284. https://doi.org/10.1007/s11120-014-9979-6. (PMID: 10.1007/s11120-014-9979-624510550)
      Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng. Biotechnol. 2:21. https://doi.org/10.3389/fbioe.2014.00021. (PMID: 10.3389/fbioe.2014.00021)
      DeColli AA, Nemeria NS, Majumdar A, Gerfen GJ, Jordan F, Freel Meyers CL (2018) Oxidative decarboxylation of pyruvate by 1-deoxy-d-xyulose 5-phosphate synthase, a central metabolic enzyme in bacteria. J Biol Chem 293(28):10857–10869. https://doi.org/10.1074/jbc.RA118.001980. (PMID: 10.1074/jbc.RA118.001980297848786052232)
      Desai RK, Streefland M, Wijffelsab RH, Eppink MHM (2016) Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem 18(5):1261–1267. https://doi.org/10.1039/C5GC01301A. (PMID: 10.1039/C5GC01301A)
      Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic gram-positive bacteria. Front Microbiol 10:463. https://doi.org/10.3389/fmicb.2019.00463. (PMID: 10.3389/fmicb.2019.00463309841186449470)
      Espinosa Álvarez C, Vardanega R, Salinas-Fuentes F, Palma Ramírez J, Bugueño Muñoz W, Jiménez-Rondón D, Meireles MAA, Cerezal Mezquita P, Ruiz-Domínguez MC (2020) Effect of CO 2 flow rate on the extraction of astaxanthin and fatty acids from Haematococcus pluvialis using supercritical fluid technology. Molecules 25(24):6044. https://doi.org/10.3390/molecules25246044. (PMID: 10.3390/molecules252460447766558)
      Gao F, Sun Z, Kong F, Xiao J (2020) Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 188:112044. https://doi.org/10.1016/j.ejmech.2020.112044. (PMID: 10.1016/j.ejmech.2020.11204431945642)
      Gong M, Bassi A (2017) Investigation of chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Appl Biochem Biotechnol 183(2):652–671. https://doi.org/10.1007/s12010-017-2537-x. (PMID: 10.1007/s12010-017-2537-x28647795)
      Grechanik V, Romanova A, Naydov I, Tsygankov A (2020) Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production. Photosynth Res 143(3):275–286. https://doi.org/10.1007/s11120-019-00701-1. (PMID: 10.1007/s11120-019-00701-131897856)
      Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Factories 12:84. https://doi.org/10.1186/1475-2859-12-84. (PMID: 10.1186/1475-2859-12-84)
      Han X, Song X, Li F, Lu Y (2020) Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab Eng Commun 11:e00142. https://doi.org/10.1016/j.mec.2020.e00142. (PMID: 10.1016/j.mec.2020.e00142329952707516279)
      Harvey PJ, Ben-Amotz A (2020) Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Res 50:102002. https://doi.org/10.1016/j.algal.2020.102002. (PMID: 10.1016/j.algal.2020.102002)
      Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85(5):475–481. https://doi.org/10.1002/bit.10914. (PMID: 10.1002/bit.1091414760687)
      Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in microalgae. Subcell Biochem 79:219–237. https://doi.org/10.1007/978-3-319-39126-7_8. (PMID: 10.1007/978-3-319-39126-7_827485224)
      Hillier SG, Lathe R (2019) Terpenes, hormones and life: isoprene rule revisited. J Endocrinol 242(2):R9–R22. https://doi.org/10.1530/JOE-19-0084. (PMID: 10.1530/JOE-19-008431051473)
      Huang JJ, Lin S, Xu W, Cheung PCK (2018) Enhancement of the production of bioactive microalgal metabolites by ultraviolet radiation (UVA 365 nm). J Agric Food Chem 66(39):10215–10224. https://doi.org/10.1021/acs.jafc.8b03789. (PMID: 10.1021/acs.jafc.8b0378930204439)
      Jaramillo-Madrid AC, Abbriano R, Ashworth J, Fabris M, Pernice M, Ralph PJ (2020) Overexpression of key sterol pathway enzymes in two model marine diatoms alters sterol profiles in Phaeodactylum tricornutum. Pharmaceuticals (Basel) 13(12):481. https://doi.org/10.3390/ph13120481. (PMID: 10.3390/ph13120481)
      Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042–761018. https://doi.org/10.1155/2010/761042. (PMID: 10.1155/2010/761042204143632857869)
      Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10(3):e0120446. https://doi.org/10.1371/journal.pone.0120446. (PMID: 10.1371/journal.pone.0120446257641334357444)
      Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196-197:33–41. https://doi.org/10.1016/j.jbiotec.2015.01.006. (PMID: 10.1016/j.jbiotec.2015.01.00625612872)
      Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL (2019) Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. Bioresour Technol 290:121794. https://doi.org/10.1016/j.biortech.2019.121794. (PMID: 10.1016/j.biortech.2019.12179431319214)
      Khoo KS, Ooi CW, Chew KW, Foo SC, Lim JW, Tao Y, Jiang N, Ho SH, Show PL (2021) Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO 2 -based alkyl carbamate ionic liquids. Chem Eng J 411:128510. https://doi.org/10.1016/j.cej.2021.128510. (PMID: 10.1016/j.cej.2021.128510)
      Kishimoto Y, Yoshida H, Kondo K (2016) Potential anti-atherosclerotic properties of astaxanthin. Mar Drugs 14(2):35. https://doi.org/10.3390/md14020035. (PMID: 10.3390/md140200354771988)
      Laje K, Seger M, Dungan B, Cooke P, Polle J, Holguin FO (2019) Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone. Mar Drugs 17(3):187. https://doi.org/10.3390/md17030187. (PMID: 10.3390/md170301876471924)
      Lauersen KJ (2019) Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. Planta 249(1):155–180. https://doi.org/10.1007/s00425-018-3048-x. (PMID: 10.1007/s00425-018-3048-x30467629)
      Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J (2020) Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 43:107602. https://doi.org/10.1016/j.biotechadv.2020.107602. (PMID: 10.1016/j.biotechadv.2020.10760232711005)
      Liang MH, Hao YF, Li YM, Liang YJ, Jiang JG (2016) Inhibiting lycopene cyclases to accumulate lycopene in high β-carotene-accumulating Dunaliella bardawil. Food Bioprocess Technol 9:1002–1009. https://doi.org/10.1007/s11947-016-1681-6. (PMID: 10.1007/s11947-016-1681-6)
      Liang MH, Wang L, Wang Q, Zhu J, Jiang JG (2019) High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr 59(15):2423–2441. https://doi.org/10.1080/10408398.2018.1455030. (PMID: 10.1080/10408398.2018.145503029676930)
      Lin PC, Zhang F, Pakrasi HB (2021) Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun 12:e00164. https://doi.org/10.1016/j.mec.2021.e00164. (PMID: 10.1016/j.mec.2021.e00164336591807890178)
      Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE (2017) The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 12(12):e0189816. https://doi.org/10.1371/journal.pone.0189816. (PMID: 10.1371/journal.pone.0189816292816795744966)
      Lu Y, Zhou W, Wei L, Li J, Jia J, Li F, Smith SM, Xu J (2014) Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnol Biofuels 7:81. https://doi.org/10.1186/1754-6834-7-81. (PMID: 10.1186/1754-6834-7-81249209594052811)
      Ma R, Zhao X, Xie Y, Ho SH, Chen J (2019) Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresour Technol 275:416–420. https://doi.org/10.1016/j.biortech.2018.12.109. (PMID: 10.1016/j.biortech.2018.12.10930626542)
      Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2008) Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31(8):1352–1362. https://doi.org/10.1002/jssc.200700503. (PMID: 10.1002/jssc.20070050318383244)
      Martins AP, Necchi-Junior O, Colepicolo P, Yokoya NS (2011) Effects of nitrate and phosphate availabilities on growth, photosynthesis and pigment and protein contents in colour strains of Hypnea musciformis (Wulfen in Jacqu.) J.V.Lamour. (Gigartinales, Rhodophyta). Brazil J Pharmacol 21(2):340–348. https://doi.org/10.1590/S0102-695X2011005000078. (PMID: 10.1590/S0102-695X2011005000078)
      Matsushima D, Jenke-Kodama H, Sato Y, Fukunaga Y, Sumimoto K, Kuzuyama T, Matsunaga S, Okada S (2012) The single cellular green microalga Botryococcus braunii, race B possesses three distinct 1-deoxy-D-xylulose 5-phosphate synthases. Plant Sci 185-186:309–320. https://doi.org/10.1016/j.plantsci.2012.01.002. (PMID: 10.1016/j.plantsci.2012.01.00222325894)
      Menin B, Santabarbara S, Lami A, Musazzi S, Villafiorita Monteleone F, Casazza AP (2019) Non-endogenous ketocarotenoid accumulation in engineered Synechocystis sp. PCC 6803. Physiol Plant 166(1):403–412. https://doi.org/10.1111/ppl.12900. (PMID: 10.1111/ppl.1290030548263)
      Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324. https://doi.org/10.1111/bph.13625. (PMID: 10.1111/bph.1362527638711)
      Molino A, Mehariya S, Iovine A, Larocca V, Di Sanzo G, Martino M, Casella P, Chianese S, Musmarra D (2018) Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO 2 supercritical fluid extraction technology with ethanol as co-solvent. Mar Drugs 16(11):432. https://doi.org/10.3390/md16110432. (PMID: 10.3390/md161104326266296)
      Monte J, Ribeiro C, Parreira C, Costa L, Brive L, Casal S, Brazinha C, Crespo JG (2020) Biorefinery of Dunaliella salina: sustainable recovery of carotenoids, polar lipids and glycerol. Bioresour Technol 297:122509. https://doi.org/10.1016/j.biortech.2019.122509. (PMID: 10.1016/j.biortech.2019.12250931812914)
      Mulders KJ, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50(2):229–242. https://doi.org/10.1111/jpy.12173. (PMID: 10.1111/jpy.1217326988181)
      Ng IS, Tan SI, Kao PH, Chang YK, Chang JS (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12(10):1600644. https://doi.org/10.1002/biot.201600644. (PMID: 10.1002/biot.201600644)
      Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF (2019) Microalgal Carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17(11):640. https://doi.org/10.3390/md17110640. (PMID: 10.3390/md171106406891288)
      Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottar M (2020) Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnol J 18(10):2053–2067. https://doi.org/10.1111/pbi.13364. (PMID: 10.1111/pbi.133647540493)
      Pichersky E, Raguso RA (2018) Why do plants produce so many terpenoid compounds? New Phytol 220(3):692–702. https://doi.org/10.1111/nph.14178. (PMID: 10.1111/nph.1417827604856)
      Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134. https://doi.org/10.1016/j.foodchem.2018.10.066. (PMID: 10.1016/j.foodchem.2018.10.06630502128)
      Saha SK, Moane S, Murray P (2013) Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour Technol 147:23–28. https://doi.org/10.1016/j.biortech.2013.08.022. (PMID: 10.1016/j.biortech.2013.08.02223981270)
      Saini RK, Keum YS (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103. https://doi.org/10.1016/j.foodchem.2017.07.099.
      Sanzo GD, Mehariya S, Martino M, Larocca V, Casella P, Chianese S, Musmarra D, Balducchi R, Molino A (2018) Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae. Mar Drugs 16(9):334. https://doi.org/10.3390/md16090334. (PMID: 10.3390/md160903346163853)
      Schempp FM, Drummond L, Buchhaupt M, Schrader J (2018) Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J Agric Food Chem 66(10):2247–2258. https://doi.org/10.1021/acs.jafc.7b00473. (PMID: 10.1021/acs.jafc.7b0047328418659)
      Schmitz AC, Hartline CJ, Zhang F (2017) Engineering microbial metabolite dynamics and heterogeneity. Biotechnol J 12(10):1700422. https://doi.org/10.1002/biot.201700422. (PMID: 10.1002/biot.201700422)
      Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13(11):1450–1464. (PMID: 10.1128/EC.00183-14)
      Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3. Biotech 5(2):129–151. https://doi.org/10.1007/s13205-014-0220-2. (PMID: 10.1007/s13205-014-0220-2)
      Su Y (2021) Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci Total Environ 762:144590. https://doi.org/10.1016/j.scitotenv.2020.144590. (PMID: 10.1016/j.scitotenv.2020.14459033360454)
      Su Y, Lundholm N, Friis SMM, Ellegaard M (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res 8:2363–2372. https://doi.org/10.1007/s12274-015-0746-6. (PMID: 10.1007/s12274-015-0746-6)
      Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H (2018) Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresour Technol 250:868–876. https://doi.org/10.1016/j.biortech.2017.11.005. (PMID: 10.1016/j.biortech.2017.11.00529174352)
      Sun D, Zhang Z, Zhang Y, Cheng KW, Chen F (2019) Light induces carotenoids accumulation in a heterotrophic docosahexaenoic acid producing microalga, Crypthecodinium sp. SUN. Bioresour Technol 276:177–182. https://doi.org/10.1016/j.biortech.2018.12.093. (PMID: 10.1016/j.biortech.2018.12.09330623873)
      Tirado DF, Calvo L (2019) The Hansen theory to choose the best cosolvent for supercritical CO 2 extraction of β-carotene from Dunaliella salina. J Supercrit Fluids 145:211–218. https://doi.org/10.1016/j.supflu.2018.12.013. (PMID: 10.1016/j.supflu.2018.12.013)
      Tokuhiro K, Muramatsu M, Ohto C, Kawaguchi T, Obata S, Muramoto N, Hirai M, Takahashi H, Kondo A, Sakuradani E, Shimizu S (2009) Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae. Appl Environ Microbiol 75(17):5536–5543. https://doi.org/10.1128/AEM.00277-09. (PMID: 10.1128/AEM.00277-09195925342737941)
      Tran NT, Kaldenhoff R (2020) Metabolic engineering of ketocarotenoids biosynthetic pathway in Chlamydomonas reinhardtii strain CC-4102. Sci Rep 10(1):10688. https://doi.org/10.1038/s41598-020-67756-2. (PMID: 10.1038/s41598-020-67756-2326121167329852)
      Vidhyavathi R, Sarada R, Ravishankar GA (2009) Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme Microb Tech 45(2):88–93. https://doi.org/10.1016/j.enzmictec.2009.05.005. (PMID: 10.1016/j.enzmictec.2009.05.005)
      Wang S, Verma SK, Hakeem Said I, Thomsen L, Ullrich MS, Kuhnert N (2018) Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb Cell Factories 17(1):110. https://doi.org/10.1186/s12934-018-0957-0. (PMID: 10.1186/s12934-018-0957-0)
      Wichmann J, Baier T, Wentnagel E, Lauersen KJ, Kruse O (2018) Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng 45:211–222. https://doi.org/10.1016/j.ymben.2017.12.010. (PMID: 10.1016/j.ymben.2017.12.01029258965)
      Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73(19):6277–6283. https://doi.org/10.1128/AEM.00861-07. (PMID: 10.1128/AEM.00861-07176935642075014)
      Xi Y, Wang J, Xue S, Chi Z (2020) β-Carotene production from Dunaliella salina cultivated with bicarbonate as carbon source. J Microbiol Biotechnol 30(6):868–877. https://doi.org/10.4014/jmb.1910.10035. (PMID: 10.4014/jmb.1910.1003532238762)
      Xu W, Chai C, Shao L, Yao J, Wang Y (2016) Metabolic engineering of Rhodopseudomonas palustris for squalene production. J Ind Microbiol Biotechnol 43(5):719–725. https://doi.org/10.1007/s10295-016-1745-7. (PMID: 10.1007/s10295-016-1745-726886756)
      Xu Y, Harvey PJ (2019) Carotenoid production by Dunaliella salina under red light. Antioxidants (Basel) 8(5):123. https://doi.org/10.3390/antiox8050123. (PMID: 10.3390/antiox8050123)
      Ying K, Gilmour DJ, Zimmerman WB (2015) Periodic CO 2 dosing strategy for Dunaliella salina batch culture. Int J Mol Sci 16(5):11509–11521. https://doi.org/10.3390/ijms160511509. (PMID: 10.3390/ijms160511509259970054463714)
      Yoshitomi T, Shimada N, Iijima K, Hashizume M, Yoshimoto K (2019) Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress. J Biosci Bioeng 128(6):751–754. https://doi.org/10.1016/j.jbiosc.2019.06.002. (PMID: 10.1016/j.jbiosc.2019.06.00231253510)
      Zhang WW, Zhou XF, Zhang YL, Cheng PF, Ma R, Cheng WL, Chu HQ (2018) Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. J Microbiol Biotechnol 28(12):2019–2028. https://doi.org/10.4014/jmb.1807.07008. (PMID: 10.4014/jmb.1807.0700830394042)
      Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530. https://doi.org/10.1146/annurev-biochem-052010-100934. (PMID: 10.1146/annurev-biochem-052010-100934237462615031371)
      Zhao X, Zhang X, Liu H, Zhu H, Zhu Y (2019) Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci Biotechnol 28(6):1637–1647. https://doi.org/10.1007/s10068-019-00608-6. (PMID: 10.1007/s10068-019-00608-6318073366859130)
      Zhu Q, Zeng D, Yu S, Cui C, Li J, Li H, Chen J, Zhang R, Zhao X, Chen L, Liu YG (2018) From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant 11(12):1440–1448. https://doi.org/10.1016/j.molp.2018.09.007. (PMID: 10.1016/j.molp.2018.09.00730296601)
      Zozina VI, Covantev S, Goroshko OA, Krasnykh LM, Kukes VG (2018) Coenzyme Q10 in cardiovascular and metabolic diseases: current state of the problem. Curr Cardiol Rev 14(13):164–174. https://doi.org/10.2174/1573403X14666180416115428. (PMID: 10.2174/1573403X14666180416115428296638946131403)
    • Contributed Indexing:
      Keywords: Extraction; Fermentation; Metabolic engineering; Microalgae; Terpenoids
    • الرقم المعرف:
      0 (Terpenes)
      36-88-4 (Carotenoids)
      S5UOB36OCZ (Mevalonic Acid)
    • الموضوع:
      Date Created: 20210614 Date Completed: 20210629 Latest Revision: 20210629
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s00253-021-11368-x
    • الرقم المعرف:
      34125275