Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • الموضوع:
    • نبذة مختصرة :
      Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.
      (© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22. https://doi.org/10.1038/346818a0 . (PMID: 10.1038/346818a01697402)
      Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20:2424–34. https://doi.org/10.1016/j.bios.2004.11.006 . (PMID: 10.1016/j.bios.2004.11.00615854817)
      Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, et al. Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta. 2014;837:1–15. https://doi.org/10.1016/j.aca.2014.04.055 . (PMID: 10.1016/j.aca.2014.04.05525000852)
      Citartan M, Gopinath SCB, Tominaga J, Tan S-C, Tang T-H. Assays for aptamer-based platforms. Biosens Bioelectron. 2012;34:1–11. https://doi.org/10.1016/j.bios.2012.01.002 . (PMID: 10.1016/j.bios.2012.01.00222326894)
      Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, et al. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal Chem. 2019;91:3270–6. https://doi.org/10.1021/acs.analchem.8b03300 . (PMID: 10.1021/acs.analchem.8b0330030642158)
      Wang BB, Zhao X, Chen LJ, Yang C, Yan XP. Functionalized persistent luminescence nanoparticle-based aptasensor for autofluorescence-free determination of kanamycin in food samples. Anal Chem. 2021;93:2589–95. https://doi.org/10.1021/acs.analchem.0c04648 . (PMID: 10.1021/acs.analchem.0c0464833410662)
      Mo F, Han M, Weng X, Zhang Y, Li J, Li H. Magnetic-assisted methylene blue-intercalated amplified dsDNA for polarity-switching-mode photoelectrochemical aptasensing. Anal Chem. 2021;93:1764–70. https://doi.org/10.1021/acs.analchem.0c04521 . (PMID: 10.1021/acs.analchem.0c0452133372772)
      Bezerra AB, Kurian ASN, Easley CJ. Nucleic-acid driven cooperative bioassays using probe proximity or split-probe techniques. Anal Chem. 2020;93:198–214. https://doi.org/10.1021/acs.analchem.0c04364 . (PMID: 10.1021/acs.analchem.0c0436433147015)
      Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48. https://doi.org/10.1039/c8cs00880a .
      Feagin TA, Maganzini N, Soh HT. Strategies for creating structure-switching aptamers. ACS Sensors. 2018;3:1611–5. https://doi.org/10.1021/acssensors.8b00516 . (PMID: 10.1021/acssensors.8b0051630156834)
      Nutiu R, Li Y. Structure-switching signaling aptamers. JACS. 2003;125:4771–8. https://doi.org/10.1021/ja028962o . (PMID: 10.1021/ja028962o)
      Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, et al. Programmable DNA switches and their applications. Nanoscale. 2018;10:4607–41. https://doi.org/10.1039/c7nr07348h . (PMID: 10.1039/c7nr07348h29465723)
      Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering aptamer switches for multifunctional stimulus-responsive nanosystems. Adv Mater. 2020;2003704:1–26. https://doi.org/10.1002/adma.202003704 . (PMID: 10.1002/adma.202003704)
      Munzar JD, Ng A, Corrado M, Juncker D. Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chem Sci. 2017:8. https://doi.org/10.1039/c6sc03993f .
      Munzar JD, Ng A, Juncker D. Comprehensive profiling of the ligand binding landscapes of duplexed aptamer families reveals widespread induced fit. Nat Commun. 2018:9. https://doi.org/10.1038/s41467-017-02556-3 .
      Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J Am Chem Soc. 2012;134:20601–4. https://doi.org/10.1021/ja310585e . (PMID: 10.1021/ja310585e23215257)
      Bissonnette S, Del Grosso E, Simon AJ, Plaxco KW, Ricci F, Valleé-Bélisle A. Optimizing the specificity window of biomolecular receptors using structure-switching and allostery. ACS Sensors. 2020;5:1937–42. https://doi.org/10.1021/acssensors.0c00237 . (PMID: 10.1021/acssensors.0c0023732297508)
      Massey M, Russ Algar W, Krull UJ. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates. Anal Chim Acta. 2006;568:181–9. https://doi.org/10.1016/j.aca.2005.12.050 . (PMID: 10.1016/j.aca.2005.12.05017761259)
      Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, et al. NUPACK: Analysis and design of nucleic acid systems. J Comput Chem. 2011;32:170–3. https://doi.org/10.1002/jcc . (PMID: 10.1002/jcc20645303)
      Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31. https://doi.org/10.1093/nar/gkg595 .
      OligoAnalyzer® program, IDT, Coralville, Iowa, USA. https://www.idtdna.com/SciTools . Accessed 8 Dec 2020.
      Moreira BG, You Y, Behlke MA, Owczarzy R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem Biophys Res Commun. 2005;327:473–84. https://doi.org/10.1016/j.bbrc.2004.12.035 . (PMID: 10.1016/j.bbrc.2004.12.03515629139)
      Marras SAE, Kramer FR, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 2002;30:1–8. https://doi.org/10.1093/nar/gnf121 . (PMID: 10.1093/nar/gnf121)
      Vallée-Bélisle A, Ricci F, Plaxco KW. Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. PNAS. 2009;106:13802–7. (PMID: 10.1073/pnas.0904005106)
      Idili A, Ricci F, Valée-Bélisle A. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves. Nucleic Acids Res. 2017;45:7571–80. https://doi.org/10.1093/nar/gkx498 . (PMID: 10.1093/nar/gkx498286054615737623)
      Idili A, Plaxco KW, Vallé E-Bé A, Ricci F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS Nano. 2013;7:10863–9. https://doi.org/10.1021/nn404305e . (PMID: 10.1021/nn404305e242197614281346)
      National Center for Biotechnology Information. PubChem Compound Summary for CID 1176, Urea. https://pubchem.ncbi.nlm.nih.gov/compound/Urea . Accessed 9 Dec 2020.
      Mergny J-L, Lacroix L. Analysis of thermal melting curves. Oligonucleotides. 2003;13:515–37. (PMID: 10.1089/154545703322860825)
      Bevington PR, Robinson DK. Error analysis in: data reduction and error analysis for the physical sciences. 3rd ed. Kent A: Peterson; 2003.
      Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: an overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta. 2020;1104:10–27. https://doi.org/10.1016/j.aca.2019.12.067 . (PMID: 10.1016/j.aca.2019.12.06732106939)
      Peeters B, Daems D, Van Der Donck T, Delport F, Lammertyn J. Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing. ACS Appl Mater Interfaces. 2019;7:6759–68. https://doi.org/10.1021/acsami.8b18756 . (PMID: 10.1021/acsami.8b18756)
      Peeters B, Safdar S, Daems D, Goos P, Spasic D, Lammertyn J. Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene. Anal Chem. 2020;92:10783–91. https://doi.org/10.1021/acs.analchem.0c02241 . (PMID: 10.1021/acs.analchem.0c0224132638586)
      Lu J, Spasic D, Delport F, Van Stappen T, Detrez I, Daems D, et al. A rapid immunoassay for detection of infliximab in whole blood using a fiber-optic SPR biosensor. Anal Chem acsanalchem. 2017:6b05092. https://doi.org/10.1021/acs.analchem.6b05092 .
      Vallée-Bélisle A, Ricci F, Plaxco KW. Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc. 2012;134:2876–9. https://doi.org/10.1021/ja209850j . (PMID: 10.1021/ja209850j222396883522460)
      Gauglitz G. Analytical evaluation of sensor measurements. Anal Bioanal Chem. 2018;410:5–13. https://doi.org/10.1007/s00216-017-0624-z . (PMID: 10.1007/s00216-017-0624-z29018931)
    • Grant Information:
      FWO SB/1SC8519N Fonds Wetenschappelijk Onderzoek
    • Contributed Indexing:
      Keywords: Aptamer; DNA nanosensor; DNA nanotechnology; Duplexed aptamer; Modeling; Thermal denaturation
    • الرقم المعرف:
      0 (Aptamers, Nucleotide)
      EC 3.4.21.5 (Thrombin)
    • الموضوع:
      Date Created: 20210610 Date Completed: 20211019 Latest Revision: 20211019
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s00216-021-03444-y
    • الرقم المعرف:
      34109445