References: Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22. https://doi.org/10.1038/346818a0 . (PMID: 10.1038/346818a01697402)
Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20:2424–34. https://doi.org/10.1016/j.bios.2004.11.006 . (PMID: 10.1016/j.bios.2004.11.00615854817)
Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, et al. Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta. 2014;837:1–15. https://doi.org/10.1016/j.aca.2014.04.055 . (PMID: 10.1016/j.aca.2014.04.05525000852)
Citartan M, Gopinath SCB, Tominaga J, Tan S-C, Tang T-H. Assays for aptamer-based platforms. Biosens Bioelectron. 2012;34:1–11. https://doi.org/10.1016/j.bios.2012.01.002 . (PMID: 10.1016/j.bios.2012.01.00222326894)
Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, et al. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal Chem. 2019;91:3270–6. https://doi.org/10.1021/acs.analchem.8b03300 . (PMID: 10.1021/acs.analchem.8b0330030642158)
Wang BB, Zhao X, Chen LJ, Yang C, Yan XP. Functionalized persistent luminescence nanoparticle-based aptasensor for autofluorescence-free determination of kanamycin in food samples. Anal Chem. 2021;93:2589–95. https://doi.org/10.1021/acs.analchem.0c04648 . (PMID: 10.1021/acs.analchem.0c0464833410662)
Mo F, Han M, Weng X, Zhang Y, Li J, Li H. Magnetic-assisted methylene blue-intercalated amplified dsDNA for polarity-switching-mode photoelectrochemical aptasensing. Anal Chem. 2021;93:1764–70. https://doi.org/10.1021/acs.analchem.0c04521 . (PMID: 10.1021/acs.analchem.0c0452133372772)
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-acid driven cooperative bioassays using probe proximity or split-probe techniques. Anal Chem. 2020;93:198–214. https://doi.org/10.1021/acs.analchem.0c04364 . (PMID: 10.1021/acs.analchem.0c0436433147015)
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48. https://doi.org/10.1039/c8cs00880a .
Feagin TA, Maganzini N, Soh HT. Strategies for creating structure-switching aptamers. ACS Sensors. 2018;3:1611–5. https://doi.org/10.1021/acssensors.8b00516 . (PMID: 10.1021/acssensors.8b0051630156834)
Nutiu R, Li Y. Structure-switching signaling aptamers. JACS. 2003;125:4771–8. https://doi.org/10.1021/ja028962o . (PMID: 10.1021/ja028962o)
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, et al. Programmable DNA switches and their applications. Nanoscale. 2018;10:4607–41. https://doi.org/10.1039/c7nr07348h . (PMID: 10.1039/c7nr07348h29465723)
Rangel AE, Hariri AA, Eisenstein M, Soh HT. Engineering aptamer switches for multifunctional stimulus-responsive nanosystems. Adv Mater. 2020;2003704:1–26. https://doi.org/10.1002/adma.202003704 . (PMID: 10.1002/adma.202003704)
Munzar JD, Ng A, Corrado M, Juncker D. Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chem Sci. 2017:8. https://doi.org/10.1039/c6sc03993f .
Munzar JD, Ng A, Juncker D. Comprehensive profiling of the ligand binding landscapes of duplexed aptamer families reveals widespread induced fit. Nat Commun. 2018:9. https://doi.org/10.1038/s41467-017-02556-3 .
Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J Am Chem Soc. 2012;134:20601–4. https://doi.org/10.1021/ja310585e . (PMID: 10.1021/ja310585e23215257)
Bissonnette S, Del Grosso E, Simon AJ, Plaxco KW, Ricci F, Valleé-Bélisle A. Optimizing the specificity window of biomolecular receptors using structure-switching and allostery. ACS Sensors. 2020;5:1937–42. https://doi.org/10.1021/acssensors.0c00237 . (PMID: 10.1021/acssensors.0c0023732297508)
Massey M, Russ Algar W, Krull UJ. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates. Anal Chim Acta. 2006;568:181–9. https://doi.org/10.1016/j.aca.2005.12.050 . (PMID: 10.1016/j.aca.2005.12.05017761259)
Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, et al. NUPACK: Analysis and design of nucleic acid systems. J Comput Chem. 2011;32:170–3. https://doi.org/10.1002/jcc . (PMID: 10.1002/jcc20645303)
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31. https://doi.org/10.1093/nar/gkg595 .
OligoAnalyzer® program, IDT, Coralville, Iowa, USA. https://www.idtdna.com/SciTools . Accessed 8 Dec 2020.
Moreira BG, You Y, Behlke MA, Owczarzy R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem Biophys Res Commun. 2005;327:473–84. https://doi.org/10.1016/j.bbrc.2004.12.035 . (PMID: 10.1016/j.bbrc.2004.12.03515629139)
Marras SAE, Kramer FR, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 2002;30:1–8. https://doi.org/10.1093/nar/gnf121 . (PMID: 10.1093/nar/gnf121)
Vallée-Bélisle A, Ricci F, Plaxco KW. Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. PNAS. 2009;106:13802–7. (PMID: 10.1073/pnas.0904005106)
Idili A, Ricci F, Valée-Bélisle A. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves. Nucleic Acids Res. 2017;45:7571–80. https://doi.org/10.1093/nar/gkx498 . (PMID: 10.1093/nar/gkx498286054615737623)
Idili A, Plaxco KW, Vallé E-Bé A, Ricci F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS Nano. 2013;7:10863–9. https://doi.org/10.1021/nn404305e . (PMID: 10.1021/nn404305e242197614281346)
National Center for Biotechnology Information. PubChem Compound Summary for CID 1176, Urea. https://pubchem.ncbi.nlm.nih.gov/compound/Urea . Accessed 9 Dec 2020.
Mergny J-L, Lacroix L. Analysis of thermal melting curves. Oligonucleotides. 2003;13:515–37. (PMID: 10.1089/154545703322860825)
Bevington PR, Robinson DK. Error analysis in: data reduction and error analysis for the physical sciences. 3rd ed. Kent A: Peterson; 2003.
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: an overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta. 2020;1104:10–27. https://doi.org/10.1016/j.aca.2019.12.067 . (PMID: 10.1016/j.aca.2019.12.06732106939)
Peeters B, Daems D, Van Der Donck T, Delport F, Lammertyn J. Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing. ACS Appl Mater Interfaces. 2019;7:6759–68. https://doi.org/10.1021/acsami.8b18756 . (PMID: 10.1021/acsami.8b18756)
Peeters B, Safdar S, Daems D, Goos P, Spasic D, Lammertyn J. Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene. Anal Chem. 2020;92:10783–91. https://doi.org/10.1021/acs.analchem.0c02241 . (PMID: 10.1021/acs.analchem.0c0224132638586)
Lu J, Spasic D, Delport F, Van Stappen T, Detrez I, Daems D, et al. A rapid immunoassay for detection of infliximab in whole blood using a fiber-optic SPR biosensor. Anal Chem acsanalchem. 2017:6b05092. https://doi.org/10.1021/acs.analchem.6b05092 .
Vallée-Bélisle A, Ricci F, Plaxco KW. Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc. 2012;134:2876–9. https://doi.org/10.1021/ja209850j . (PMID: 10.1021/ja209850j222396883522460)
Gauglitz G. Analytical evaluation of sensor measurements. Anal Bioanal Chem. 2018;410:5–13. https://doi.org/10.1007/s00216-017-0624-z . (PMID: 10.1007/s00216-017-0624-z29018931)
No Comments.