Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Variations in photoreceptor throughput to mouse visual cortex and the unique effects on tuning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Visual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations requires experimental control of retinal adaptation to infer its spatio-temporal-chromatic output. Here, we measure the balance of input to mouse V1, in the anesthetized setup, from the three main photoreceptor opsins-M-opsin, S-opsin, and rhodopsin-as a function of two stimulus dimensions. The first dimension is the level of light adaptation within the mesopic range, which governs the balance of rod and cone inputs to cortex. The second stimulus dimension is retinotopic position, which governs the balance of S- and M-cone opsin input due to the opsin expression gradient in the retina. The fitted model predicts opsin input under arbitrary lighting environments, which provides a much-needed handle on in-vivo studies of the mouse visual system. We use it here to reveal that V1 is rod-mediated in common laboratory settings yet cone-mediated in natural daylight. Next, we compare functional properties of V1 under rod and cone-mediated inputs. The results show that cone-mediated V1 responds to 2.5-fold higher temporal frequencies than rod-mediated V1. Furthermore, cone-mediated V1 has smaller receptive fields, yet similar spatial frequency tuning. V1 responses in rod-deficient (Gnat1 -/- ) mice confirm that the effects are due to differences in photoreceptor opsin contribution.
    • Comments:
      Erratum in: Sci Rep. 2023 Jul 24;13(1):11949. (PMID: 37488211)
    • References:
      Demb, J. B. & Singer, J. H. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 29, 51–60 (2012). (PMID: 223103723561778)
      Gouras, P. & Link, K. Rod and cone interaction in dark-adapted monkey ganglion cells. J. Physiol. 184, 499–510 (1966). (PMID: 49586441357574)
      Völgyi, B., Deans, M. R., Paul, D. L. & Bloomfield, S. A. Convergence and segregation of the multiple rod pathways in mammalian retina. J. Neurosci. 24, 11182–11192 (2004). (PMID: 155909352834589)
      Wang, Y. V., Weick, M. & Demb, J. B. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J. Neurosci. 31, 7670–7681 (2011). (PMID: 216134803122925)
      Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004). (PMID: 15378035)
      Wässle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447–480 (1991). (PMID: 2006220)
      Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998). (PMID: 97869996793518)
      Spitschan, M., Aguirre, G. K., Brainard, D. H. & Sweeney, A. M. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6, 26756 (2016). (PMID: 272727364895134)
      Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). (PMID: 238682583777791)
      Calvert, P. D. et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc. Natl. Acad. Sci. USA 97, 13913–13918 (2000). (PMID: 1109574417675)
      Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003). (PMID: 12765606)
      Rhim, I., Coello-Reyes, G., Ko, H.-K. & Nauhaus, I. Maps of cone opsin input to mouse V1 and higher visual areas. J. Neurophysiol. https://doi.org/10.1152/jn.00849.2016 (2017). (PMID: 10.1152/jn.00849.2016281006585380780)
      Naarendorp, F. et al. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. J. Neurosci. 30, 12495–12507 (2010). (PMID: 208441443423338)
      Schnapf, J. L., Nunn, B. J., Meister, M. & Baylor, D. A. Visual transduction in cones of the monkey Macaca fascicularis. J. Physiol. 427, 681–713 (1990). (PMID: 21009871189952)
      Applebury, M. L. et al. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000). (PMID: 11055434)
      Remtulla, S. & Hallett, P. E. A schematic eye for the mouse, and comparisons with the rat. Vis. Res. 25, 21–31 (1985). (PMID: 3984214)
      Yüzgeç, Ö., Prsa, M., Zimmermann, R. & Huber, D. Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Curr. Biol. 28, 392–400.e3 (2018). (PMID: 293580695807087)
      Franke, K. et al. An arbitrary-spectrum spatial visual stimulator for vision research. Elife 8, e48779 (2019). (PMID: 315451726783264)
      Tan, Z., Sun, W., Chen, T.-W., Kim, D. & Ji, N. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5, 1–15 (2015).
      Aihara, S., Yoshida, T., Hashimoto, T. & Ohki, K. Color representation is retinotopically biased but locally intermingled in mouse V1. Front. Neural Circuits 11, 2017 (2017).
      Denman, D. J., Siegle, J. H., Koch, C., Reid, R. C. & Blanche, T. J. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37, 1102–1116 (2017). (PMID: 279869266596857)
      Nakatani, K., Tamura, T. & Yau, K. W. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J. Gen. Physiol. 97, 413–435 (1991). (PMID: 2037836)
      Soucy, E., Wang, Y., Nirenberg, S., Nathans, J. & Meister, M. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481–493 (1998). (PMID: 9768836)
      Yin, L., Smith, R. G., Sterling, P. & Brainard, D. H. Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression. J. Neurosci. 26, 12351–12361 (2006). (PMID: 171220601815484)
      Tikidji-Hamburyan, A. et al. Rods progressively escape saturation to drive visual responses in daylight conditions. Nat. Commun. 8, 1813 (2017). (PMID: 291806675703729)
      Wang, J.-S. & Kefalov, V. J. An alternative pathway mediates the mouse and human cone visual cycle. Curr. Biol. 19, 1665–1669 (2009). (PMID: 197819402762012)
      Demb, J. B. & Singer, J. H. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci 29, 51–60 (2012). (PMID: 223103723561778)
      Grimes, W. N., Baudin, J., Azevedo, A. W. & Rieke, F. Range, routing and kinetics of rod signaling in primate retina. Elife 7, e38281 (2018). (PMID: 302992546218188)
      Joesch, M. & Meister, M. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532, 236–239 (2016). (PMID: 27049951)
      Nadal-Nicolás, F. M. et al. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9 (2020).
      Szatko, K. P. et al. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481 (2020). (PMID: 326612267359335)
      Freeman, T. C. B., Durand, S., Kiper, D. C. & Carandini, M. Suppression without Inhibition in Visual Cortex. Neuron 35, 759–771 (2002). (PMID: 12194874)
      Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008). (PMID: 186503303040721)
      Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100 (2013). (PMID: 23172139)
      Cowan, C. S., Sabharwal, J., Seilheimer, R. L. & Wu, S. M. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation. Vision. Res. 131, 96–105 (2017). (PMID: 28087445)
      Barlow, H. B., Fitzhugh, R., & Kuffler, S. W. Change of organization in the receptive fields of the cat′s retina during dark adaptation. J Physiol. 137, 338–354 (1957). (PMID: 134637711363009)
      Enroth-Cugell, C., Hertz, B. G., & Lennie, P. Convergence of rod and cone signals in the cat′s retina. J Physiol. 269, 297–318 (1977). (PMID: 8945951283714)
      Ruda, K., Zylberberg, J. & Field, G. D. Ignoring correlated activity causes a failure of retinal population codes. Nat. Commun. 11, 4605 (2020). (PMID: 329290737490269)
      Juavinett, A. L., Nauhaus, I., Garrett, M. E., Zhuang, J. & Callaway, E. M. Automated identification of mouse visual areas with intrinsic signal imaging. Nat. Protoc. 12, 32–43 (2017). (PMID: 27906169)
      Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). (PMID: 238682583777791)
      Brainard, D. H. The psychophysics toolbox. Spat. Vis 10, 433–436 (1997). (PMID: 9176952)
      Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997). (PMID: 9176953)
      Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011). (PMID: 221963383248795)
      Gao, E., DeAngelis, G. C. & Burkhalter, A. Parallel input channels to mouse primary visual cortex. J. Neurosci. 30, 5912–5926 (2010). (PMID: 204276513129003)
      Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528 (2000). (PMID: 11016572)
      Estévez, O. & Spekreijse, H. The ‘silent substitution’ method in visual research. Vis. Res. 22, 681–691 (1982). (PMID: 7112962)
      Lei, B. & Yao, G. Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360nm to 1020nm. Exp. Eye Res. 83, 610–614 (2006). (PMID: 16682025)
      Lyubarsky, A. L., Daniele, L. L. & Pugh, E. N. From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vis. Res. 44, 3235–3251 (2004). (PMID: 15535992)
      Smith, S. L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13, 1144–1149 (2010). (PMID: 207111832999824)
      Schneeweis, D. M. & Schnapf, J. L. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J. Neurosci. 19, 1203–1216 (1999). (PMID: 99523986786037)
    • Grant Information:
      R01 EY028657 United States EY NEI NIH HHS
    • الرقم المعرف:
      0 (Cone Opsins)
      0 (Rod Opsins)
    • الموضوع:
      Date Created: 20210608 Date Completed: 20211108 Latest Revision: 20240226
    • الموضوع:
      20240226
    • الرقم المعرف:
      PMC8184960
    • الرقم المعرف:
      10.1038/s41598-021-90650-4
    • الرقم المعرف:
      34099749