Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Respiratory performance of humans exposed to moderate levels of carbon dioxide.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Blackwell Country of Publication: England NLM ID: 9423515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0668 (Electronic) Linking ISSN: 09056947 NLM ISO Abbreviation: Indoor Air Subsets: MEDLINE
    • بيانات النشر:
      Publication: Oxford : Blackwell
      Original Publication: Copenhagen : Danish Technical Press, c1991-
    • الموضوع:
    • نبذة مختصرة :
      In a business as usual scenario, atmospheric carbon dioxide concentration (CO 2 ) could reach 950 parts per million (ppm) by 2100. Indoor CO 2 concentrations will rise consequently, given its dependence on atmospheric CO 2 levels. If buildings are ventilated following current standards in 2100, indoor CO 2 concentration could be over 1300 ppm, depending on specific ventilation codes. Such exposure to CO 2 could have physiological and psychological effects on building occupants. We conducted a randomized, within-subject study, examining the physiological effects on the respiratory functions of 15 persons. We examined three exposures, each 150 min long, with CO 2 of: 900 ppm (reference), 1450 ppm (decreased ventilation), and 1450 ppm (reference condition with added pure CO 2 ). We measured respiratory parameters with capnometry and forced vital capacity (FVC) tests. End-tidal CO 2 and respiration rates did not significantly differ across the three exposures. Parameters measured using FVC decreased significantly from the start to the end of exposure only at the reduced ventilation condition (p < 0.04, large effect size). Hence, poor ventilation likely affects respiratory parameters. This effect is probably not caused by increased CO 2 alone and rather by other pollutants-predominantly human bioeffluents in this work-whose concentrations increased as a result.
      (© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
    • References:
      Persily A. Challenges in developing ventilation and indoor air quality standards: the story of ASHRAE Standard 62. Build Environ. 2015;91:61-69.
      OSHA. Sampling and Analytical Methods. Carbon Dioxide In Workplace Atmospheres. Occupational Safety and Health Administration. Published 1990. https://www.OSHA.gov/dts/sltc/methods/inorganic/id172/id172.html. Accessed July 6, 2020.
      US Department of Commerce N. Global Monitoring Laboratory-Carbon Cycle Greenhouse Gases. Published 2020. https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html. Accessed November 9, 2020.
      George K, Ziska LH, Bunce JA, Quebedeaux B. Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmos Environ. 2007;41(35):7654-7665.
      Prather M, Flato G, Friedlingstein P, et al. IPCC, 2013: Annex II: Climate System Scenario Tables. In: Stocker TF, Qin D, Plattner GK, et al. eds, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2013:52.
      Jacobson TA, Kler JS, Hernke MT, Braun RK, Meyer KC, Funk WE. Direct human health risks of increased atmospheric carbon dioxide. Nat Sustain. 2019;2(8):691-701. https://doi.org/10.1038/s41893-019-0323-1.
      Fisk W, Wargocki P, Zhang X. Do indoor CO2 levels directly affect perceived air quality, health, or work performance? ASHRAE J. 2019;61(9).
      Du B, Tandoc M, Mack ML, Siegel JA. Indoor CO2 Concentrations and cognitive function: a critical review. Indoor Air. 2020;30(6):1067-1082. https://doi.org/10.1111/ina.12706.
      Satish U, Mendell MJ, Shekhar K, et al. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120(12):1671.
      Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect. 2016;124(6):805.
      Allen JG, MacNaughton P, Cedeno-Laurent JG, et al. Airplane pilot flight performance on 21 maneuvers in a flight simulator under varying carbon dioxide concentrations. J Expo Sci Environ Epidemiol. 2019;29(4):457-468. https://doi.org/10.1038/s41370-018-0055-8.
      Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp Med Hum Perform. 2018;89(6):520-525. https://doi.org/10.3357/AMHP.5010.2018.
      Scully RR, Basner M, Nasrini J, et al. Effects of acute exposures to carbon dioxide on decision making and cognition in astronaut-like subjects. Npj Microgravity. 2019;5(1). https://doi.org/10.1038/s41526-019-0071-6.
      Zhang X, Wargocki P, Lian Z, Thyregod C. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air. 2017;27(1):47-64.
      Zhang X, Wargocki P, Lian Z. Human responses to carbon dioxide, a follow-up study at recommended exposure limits in non-industrial environments. Build Environ. 2016;100:162-171.
      Zhang X, Wargocki P, Lian Z. Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors. Indoor Air. 2017;27(1):65-77. https://doi.org/10.1111/ina.12286.
      Kajtar L, Herczeg L, Lang E, Hrustinszky T, Banhidi L. Influence of carbon-dioxide pollutant on human well-being and work intensity. Healthy Buildings. 2006;1:85-90.
      Snow S, Boyson A, Paas KHW, et al. Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors. Build Environ. 2019;156:243-252. https://doi.org/10.1016/j.buildenv.2019.04.010.
      Thom SR, Bhopale VM, Hu J, Yang M. Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome. Free Radic Biol Med. 2017;106:406-416. https://doi.org/10.1016/j.freeradbiomed.2017.03.005.
      Thom SR, Bhopale VM, Hu J, Yang M. Inflammatory responses to acute elevations of carbon dioxide in mice. J Appl Physiol. 2017;123(2):297-302. https://doi.org/10.1152/japplphysiol.00343.2017.
      Barten CW, Wang ESJ. Correlation of end-tidal CO2 measurements to arterial PaCO2 in nonintubated patients. Ann Emerg Med. 1994;23(3):560-563. https://doi.org/10.1016/S0196-0644(94)70078-8.
      Young WL, Prohovnik I, Ornstein E, Ostapkovich N, Matteo RS. Cerebral blood flow reactivity to changes in carbon dioxide calculated using end-tidal versus arterial tensions. J Cereb Blood Flow Metab. 1991;11(6):1031-1035. https://doi.org/10.1038/jcbfm.1991.171.
      Sayers JA, Smith RE, Holland RL, Keatinge WR. Effects of carbon dioxide on mental performance. J Appl Physiol. 1987;63(1):25-30.
      Shephard RJ. The immediate metabolic effects of breathing carbon dioxide mixtures*. J Physiol. 1955;129(2):393-407. https://doi.org/10.1113/jphysiol.1955.sp005362.
      Glatte Jr HA, Motsay GJ, Welch BE. Carbon Dioxide Tolerance: A Review. Defense Technical Information Center. 1967. https://doi.org/10.21236/ADA017159.
      Liu W, Zhong W, Wargocki P. Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration. Build Environ. 2017;114:96-105. https://doi.org/10.1016/j.buildenv.2016.12.020.
      Vehviläinen T, Lindholm H, Rintamäki H, et al. High indoor CO2 concentrations in an office environment increases the transcutaneous CO 2 level and sleepiness during cognitive work. J Occup Environ Hyg. 2016;13(1):19-29. https://doi.org/10.1080/15459624.2015.1076160.
      Shriram S, Ramamurthy K, Ramakrishnan S. Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Build Environ. 2019;149:58-67. https://doi.org/10.1016/j.buildenv.2018.12.015.
      Pantelic J, Liu S, Pistore L, et al. Personal CO2 cloud: laboratory measurements of metabolic CO2 inhalation zone concentration and dispersion in a typical office desk setting. J Expo Sci Environ Epidemiol. 2020;30(2):328-337. https://doi.org/10.1038/s41370-019-0179-5.
      Bekö G, Wargocki P, Wang N, et al. The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: overview of experimental methodology and preliminary results. Indoor Air. 2020;30(6):1213-1228. https://doi.org/10.1111/ina.12687.
      Barreiro TJ, Perillo I. An approach to interpreting spirometry. Am Fam Physician. 2004;69(5):1107-1116.
      Zhang X, Wargocki P, Lian Z, Xie J, Liu J. Responses to human bioeffluents at levels recommended by ventilation standards. Procedia Eng. 2017;205:609-614. https://doi.org/10.1016/j.proeng.2017.10.415.
      Gall ET, Cheung T, Luhung I, Schiavon S, Nazaroff WW. Real-time monitoring of personal exposures to carbon dioxide. Build Environ. 2016;104:59-67. https://doi.org/10.1016/j.buildenv.2016.04.021.
      Qualtrics. Experience management platform. Qualtrics. Published 2020. http://www.Qualtrics.com. Accessed September 7, 2020.
      Russell JA. A circumplex model of affect. J Pers Soc Psychol. 1980;39(6):1161-1178. https://doi.org/10.1037/h0077714.
      Watson D, Tellegen A. Toward a consensual structure of mood. Psychol Bull. 1985;98(2):219-235. https://doi.org/10.1037/0033-2909.98.2.219.
      Weidman AC, Steckler CM, Tracy JL. The jingle and jangle of emotion assessment: Imprecise measurement, casual scale usage, and conceptual fuzziness in emotion research. Emotion. 2017;17(2):267-295. https://doi.org/10.1037/emo0000226.
      Ko WH, Schiavon S, Zhang H, et al. The impact of a view from a window on thermal comfort, emotion, and cognitive performance. Build Environ. 2020;175:106779. https://doi.org/10.1016/j.buildenv.2020.106779.
      Moore VC. Spirometry: step by step. Breathe. 2012;8(3):232-240. https://doi.org/10.1183/20734735.0021711.
      Spengler CM, Czeisler CA, Shea SA. An endogenous circadian rhythm of respiratory control in humans. J Physiol. 2000;526(3):683-694. https://doi.org/10.1111/j.1469-7793.2000.00683.x.
      Pennock BE, Rogers RM, McCaffree DR. Changes in measured spirometric indices. Chest. 1981;80(1):97-99. https://doi.org/10.1378/chest.80.1.97.
      Teramoto S, Suzuki M, Matsui H, Ishii T, Matsuse T, Ouchi AY. Influence of age on diurnal variability in measurements of spirometric indices and respiratory pressures. J Asthma. 1999;36(6):487-492. https://doi.org/10.3109/02770909909054554.
      R Core Team. R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2020. https://www.R-project.org/.
      Kassambara A Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2020. https://CRAN.R-project.org/package=rstatix.
      Cohen J. A power primer. Psychol Bull. 1992;112(1):155.
      Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1-48. https://doi.org/10.18637/jss.v067.i01.
      Fisher JA. The CO2 stimulus for cerebrovascular reactivity: fixing inspired concentrations vs. targeting end-tidal partial pressures. J Cereb Blood Flow Metab. 2016;36(6):1004-1011. https://doi.org/10.1177/0271678X16639326.
      Cherniack NS. The clinical assessment of the chemical regulation of ventilation. Chest. 1976;70(2):274-281. https://doi.org/10.1378/chest.70.2.274.
      Boning D, Vaas U, Braumann KM. Blood osmolality during in vivo changes of CO2 pressure. J Appl Physiol. 1983;54(1):123-129. https://doi.org/10.1152/jappl.1983.54.1.123.
      Bako-Biro Z, Wargocki P, Wyon D, Fanger PO. Effects of air pollutants on the carbon dioxide (CO2) emission rate of human subjects. In: Indoor Climate of Buildings ´04 Health, Comfort and Safety by Operation of HVAC-R Systems. SSTP - Slovak Society of Environmental Technology; 2004:111-116. https://orbit.dtu.dk/en/publications/effects-of-air-pollutants-on-the-carbon-dioxide-co2-emission-rate. Accessed July 1, 2020.
      Schaefer KE, Hastings BJ, Carey CR, Nichols G. Respiratory acclimatization to carbon dioxide. J Appl Physiol. 1963;18(6):1071-1078. https://doi.org/10.1152/jappl.1963.18.6.1071.
      Kunzli N, Ackermann-Liebrich U, Brandli O, Tschopp JM, Schindler C, Leuenberger P. Clinically" small" effects of air pollution on FVC have a large public health impact. Swiss Study on Air Pollution and Lung Disease in Adults (SAPALDIA)-team. Eur Respir J. 2000;15(1):131-136.
      Xu X, Wang L. Synergistic effects of air pollution and personal smoking on adult pulmonary function. Arch Environ Health Int J. 1998;53(1):44-53. https://doi.org/10.1080/00039899809605688.
      Rice MB, Ljungman PL, Wilker EH, et al. Short-term exposure to air pollution and lung function in the Framingham heart study. Am J Respir Crit Care Med. 2013;188(11):1351-1357. https://doi.org/10.1164/rccm.201308-1414OC.
      EPA. AQI Basics. AirNow.gov. Published 2020. https://www.airnow.gov/aqi/aqi-basics. Accessed July 10, 2020.
    • Contributed Indexing:
      Keywords: End-tidal CO2; forced vital capacity; future buildings; respiration; spirometry; ventilation
    • الرقم المعرف:
      0 (Air Pollutants)
      142M471B3J (Carbon Dioxide)
    • الموضوع:
      Date Created: 20210515 Date Completed: 20210930 Latest Revision: 20210930
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1111/ina.12823
    • الرقم المعرف:
      33991134