Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The theoretical adhesion of Pseudomonas aeruginosa and Escherichia coli on some plumbing materials in presence of distilled water or tap water.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: United States NLM ID: 0376757 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1874-9356 (Electronic) Linking ISSN: 00155632 NLM ISO Abbreviation: Folia Microbiol (Praha) Subsets: MEDLINE
    • بيانات النشر:
      Publication: New York : Springer
      Original Publication: Praha, Academia Scientiarum Bohemoslovenica.
    • الموضوع:
    • نبذة مختصرة :
      The main aim of this work was to determine the most appropriate materials for the installation of a water system according to the characteristics of the water that passes through it. To this end, we conducted an investigation of the effect of two types of water (SDW: sterile distilled water and STW: sterile tap water) on the properties of bacterial surfaces and the theoretical adhesion of two bacteria (Pseudomonas aeruginosa and Escherichia coli) on six plumbing materials. Contact angle measurements were used to determine the surface energies of bacteria and materials. XDLVO theory was used to estimate the interactions between bacteria and plumbing materials. The results showed that water had a clear impact on the electron donor character and the hydrophobicity of the bacterial surfaces. Also, the predictive adhesion showed that all tested materials could be colonized by P. aeruginosa and E. coli ([Formula: see text]<0). However, colonization became thermodynamically less favorable or unfavorable (increase in [Formula: see text] values) with SDW and STW, respectively. Finally, the results suggest that the choice of the most suitable material for a drinking water installation is related to the quality of the water itself.
      (© 2021. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.)
    • References:
      Asri M, Elabed A, El Ghachtouli N, Koraichi SI, Bahafid W, Elabed S (2017) Theoretical and experimental adhesion of yeast strains with high chromium removal potential. Environ Eng Sci 34:693–702. https://doi.org/10.1089/ees.2016.0515. (PMID: 10.1089/ees.2016.0515)
      Assaidi A, Ellouali M, Latrache H, Mabrouki M, Timinouni M, Zahir H, Tankiouine S, Barguigua A, Mliji EM (2018a) Adhesion of Legionella pneumophila on glass and plumbing materials commonly used in domestic water systems. Int J Environ Health Res 8:125–133. https://doi.org/10.1080/09603123.2018.1429580. (PMID: 10.1080/09603123.2018.1429580)
      Assaidi A, Ellouali M, Latrache H, Mabrouki M, Timinouni M, Zahir H, Tankiouine S, Mliji EM (2018b) Adhesion of Legionella pneumophila on glass and plumbing materials commonly used in domestic water systems. Int J Environ Health Res 8:125–133. https://doi.org/10.1080/09603123.2018.1429580. (PMID: 10.1080/09603123.2018.1429580)
      Barberousse H, Brayner R, Do Rego AMB, Castaing JC, Beurdeley-Saudou P, Colombet JF (2007) Adhesion of façade coating colonisers, as mediated by physico-chemical properties. Biofouling. https://doi.org/10.1080/08927010601093026. (PMID: 10.1080/0892701060109302617453725)
      Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 297–302. https://doi.org/10.1016/j.copbio.2006.05.007.
      Boks NP, Norde W, van der Mei HC, Busscher HJ (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154:3122–3133. https://doi.org/10.1099/mic.0.2008/018622-0. (PMID: 10.1099/mic.0.2008/018622-018832318)
      Boonaert CJP, Rouxhet PG (2000) Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol 66:2548–2554. https://doi.org/10.1128/AEM.66.6.2548-2554.2000. (PMID: 10.1128/AEM.66.6.2548-2554.200010831437110580)
      Bos R, Van Der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. FEMS Microbiol 23:179–230. https://doi.org/10.1111/j.1574-6976.1999.tb00396.x. (PMID: 10.1111/j.1574-6976.1999.tb00396.x)
      Colbourne JS (1985) Materials usage and their effects on the microbiological quality of water supplies. J Appl Bacteriol 59:47S-59S. https://doi.org/10.1111/j.1365-2672.1985.tb04890.x. (PMID: 10.1111/j.1365-2672.1985.tb04890.x)
      Dong H, Onstott TC, Ko CH, Hollingsworth AD, Brown DG, Mailloux BJ (2002) Theoretical prediction of collision efficiency between adhesion-deficient bacteria and sediment grain surface. Colloids Surfaces B Biointerfaces 24:229–245. https://doi.org/10.1016/S0927-7765(01)00243-0. (PMID: 10.1016/S0927-7765(01)00243-0)
      Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881. https://doi.org/10.3201/eid0809.020063. (PMID: 10.3201/eid0809.020063121947612732559)
      Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2009) Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25:6968–6976. https://doi.org/10.1021/la9001237. (PMID: 10.1021/la900123719334745)
      Dufrêne YF, Rouxhet PG (1996) Surface composition, surface properties, and adhesiveness of Azospirillum brasilense - variation during growth. Can J Microbiol 42:548–556. https://doi.org/10.1139/m96-074. (PMID: 10.1139/m96-074)
      Eboigbodin KE, Seth A, Biggs CA (2008) A review of biofilms in domestic plumbing. J Am Water Works Assoc 100:131–138. https://doi.org/10.1002/j.1551-8833.2008.tb09753.x. (PMID: 10.1002/j.1551-8833.2008.tb09753.x)
      El Abed S, Ibnsouda SK, Latrache H (2013) Comparative study of physic-chemical characterization and microbial adhesion of oak wood with other wood species. In: Oak: Ecology, Types and Management 219–230.
      El Abed S, Mohamed M, Fatimazahra B, Hassan L, Abdellah H, Fatima H, Saad IK (2002) Study of microbial adhesion on some wood species: theoretical prediction. Microbiology 2:271–280. https://doi.org/10.1134/S0026261711010152. (PMID: 10.1134/S0026261711010152)
      El Ghmari A, Latrache H, Hamadi F, El Louali M, El Bouadili A, Hakkou A, Bourlioux P (2002) Influence of surface cell structures on physicochemical properties of Escherichia coli. New Microbiol 25:173–178. (PMID: 12019723)
      Gannon JT, Manilal VB, Alexander M (1991) Relationship between cell surface properties and transport of bacteria through soil. Appl Environ Microbiol 57:190–193. (PMID: 10.1128/aem.57.1.190-193.1991)
      Goode KR, Asteriadou K, Robbins PT, Fryer PJ (2013) Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Compr Rev Food Sci Food Saf 12:121–143. https://doi.org/10.1111/1541-4337.12000. (PMID: 10.1111/1541-4337.12000)
      Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. (PMID: 10.1038/nrmicro821)
      Hamadi F, Asserne F, Elabed S, Bensouda S, Mabrouki M, Latrache H (2014) Adhesion of Staphylococcus aureus on stainless steel treated with three types of milk. Food Control 38:104–108. https://doi.org/10.1016/j.foodcont.2013.10.006. (PMID: 10.1016/j.foodcont.2013.10.006)
      Hamadi F, Latrache H (2008) Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface. Colloids Surf B Biointerfaces 65:134–139. https://doi.org/10.1016/j.colsurfb.2008.03.010. (PMID: 10.1016/j.colsurfb.2008.03.01018467077)
      Hamadi F, Latrache H, Mabrrouki M, Elghmari A, Outzourhit A, Ellouali M, Chtaini A (2005) Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. J Adhes Sci Technol 19:73–85. https://doi.org/10.1163/1568561053066891. (PMID: 10.1163/1568561053066891)
      Hamadi F, Latrache H, Zahir H, El Abed S, Ellouali M, Saad IK (2012) The relation between the surface chemical composition of Escherichia coli and their electron donor/electron acceptor (acid-base) properties. Res J Microbiol 7:32. https://doi.org/10.3923/jm.2012.32.40. (PMID: 10.3923/jm.2012.32.40)
      Hamadi F, Latrache H, Zekraoui M, Ellouali M, Bengourram J (2009) Effect of pH on surface energy of glass and Teflon and theoretical prediction of Staphylococcus aureus adhesion. Mater Sci Eng C 29:1302–1305. https://doi.org/10.1016/j.msec.2008.10.023. (PMID: 10.1016/j.msec.2008.10.023)
      Henriques M, Azeredo J, Oliveira R (2004) Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B Biointerfaces 33:235–241. https://doi.org/10.1016/j.colsurfb.2003.10.012. (PMID: 10.1016/j.colsurfb.2003.10.012)
      Hong Y, Brown DG (2006) Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C: N ratio. Colloids Surf B Biointerfaces 50:112–119. https://doi.org/10.1016/j.colsurfb.2006.05.001. (PMID: 10.1016/j.colsurfb.2006.05.00116787742)
      Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47:105–116. https://doi.org/10.2166/wst.2003.0293. (PMID: 10.2166/wst.2003.029312701914)
      Kilb B, Lange B, Schaule G, Flemming HC, Wingender J (2003) Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Environ Health 206:563–573. https://doi.org/10.1078/1438-4639-00258. (PMID: 10.1078/1438-4639-0025814626903)
      Latrache H, El Ghmari A, Karroua M, Hakkou A, Ait MH, El Bouadili A, Bourlioux P (2002) Relations between hydrophobicity tested by three methods and surface chemical composition of Escherichia coli. New Microbiol 25:75–82. (PMID: 11837394)
      Latrache H, Mozes N, Pelletier C, Bourlioux P (1994) Chemical and physicochemical properties of Escherichia coli: variations among three strains and influence of culture conditions. Colloids Surf B Biointerfaces 2:47–56. https://doi.org/10.1016/0927-7765(94)80017-0. (PMID: 10.1016/0927-7765(94)80017-0)
      Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 7:368–378. https://doi.org/10.1111/j.1365-2672.2009.04208.x. (PMID: 10.1111/j.1365-2672.2009.04208.x)
      Makris KC, Andra SS, Botsaris G (2014) Pipe scales and biofilms in drinking-water distribution systems: undermining finished water quality. Crit Rev Environ Sci Technol 44:1477–1523. https://doi.org/10.1080/10643389.2013.790746. (PMID: 10.1080/10643389.2013.790746)
      Missirlis YF, Katsikogianni M (2007) Theoretical and experimental approaches of bacteria-biomaterial interactions. Materwiss Werksttech 38:983–994. https://doi.org/10.1002/mawe.200700240. (PMID: 10.1002/mawe.200700240)
      Mohamed M, Fatimazahra B, Hassan L (2011) Study of microbial adhesion on some wood species : theoretical prediction. Microbiology 80:43–49. https://doi.org/10.1134/S0026261711010152.
      Mozes N, Amory DE, Léonard AJ, Rouxhet PG (1989) Surface properties of microbial cells and their role in adhesion and flocculation. Colloids Surf 42:313–329. https://doi.org/10.1016/0166-6622(89)80348-8. (PMID: 10.1016/0166-6622(89)80348-8)
      Nguyen VT, Chia TWR, Turner MS, Fegan N, Dykes GA (2011) Quantification of acid-base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. J Microbiol Methods 86:89–96. https://doi.org/10.1016/j.mimet.2011.04.005. (PMID: 10.1016/j.mimet.2011.04.00521504764)
      Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100. (PMID: 15765062)
      Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842–1851. (PMID: 10.1128/aem.60.6.1842-1851.1994)
      Roosjen A, Busscher HJ, Norde W, Van der Mei HC (2006) Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology 152:2673–2682. https://doi.org/10.1099/mic.0.29005-0. (PMID: 10.1099/mic.0.29005-016946262)
      Sadiki M, Elabed S, Barkai H, Laachari F, Ibnsouda Koraichi S (2015) The impact of Thymus vulgaris extractives on cedar wood surface energy: theoretical and experimental of Penicillium spores adhesion. Ind Crops Prod 77:1020–1027. https://doi.org/10.1016/j.indcrop.2015.10.001. (PMID: 10.1016/j.indcrop.2015.10.001)
      Soumya E, Saad IK, Abdellah H, Hassan L (2013) Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface. Mater Sci Eng C 33:1276–1281. https://doi.org/10.1016/j.msec.2012.12.026. (PMID: 10.1016/j.msec.2012.12.026)
      van der Mei HC, Busscher HJ (1997) The use of X-ray photoelectron spectroscopy for the study of oral streptococcal cell surfaces. Adv Dent Res 11:388–394. https://doi.org/10.1177/08959374970110040301. (PMID: 10.1177/089593749701100403019470495)
      van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987a) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897. (PMID: 10.1128/aem.53.8.1893-1897.1987)
      van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987b) Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901. (PMID: 10.1128/aem.53.8.1898-1901.1987)
      van Oss CJ (1997) Hydrophobicity and hydrophilicity of biosurfaces. Curr Opin Colloid Interface Sci 2:503–512. https://doi.org/10.1016/S1359-0294(97)80099-4. (PMID: 10.1016/S1359-0294(97)80099-4)
      Van Oss CJ, Good RJ, Chaudhury MK (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111:378–390. https://doi.org/10.1016/0021-9797(86)90041-X. (PMID: 10.1016/0021-9797(86)90041-X)
      Van Wey AS, Cookson AL, Roy NC, Mcnabb WC, Soboleva TK, Shorten PR (2011) Bacterial biofilms associated with food particles in the human large bowel. Mol Nutr Food Res 55:969–978. https://doi.org/10.1002/mnfr.201000589. (PMID: 10.1002/mnfr.20100058921638777)
      Vernhet A, Bellon-Fontaine MN (1995) Role of bentonites in the prevention of Saccharomyces cerevisiae adhesion to solid surfaces. Colloids Surf B Biointerfaces 3:255–262. https://doi.org/10.1016/0927-7765(94)01137-T. (PMID: 10.1016/0927-7765(94)01137-T)
      Wingender J, Flemming HC (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49:277–286. https://doi.org/10.2166/wst.2004.0861. (PMID: 10.2166/wst.2004.086115303752)
      Zhao Q, Wang C, Liu Y, Wang S (2007) Bacterial adhesion on the metal-polymer composite coatings. Int J Adhes Adhes 27:85–91. https://doi.org/10.1016/j.ijadhadh.2006.01.001. (PMID: 10.1016/j.ijadhadh.2006.01.001)
    • الموضوع:
      Date Created: 20210417 Date Completed: 20211104 Latest Revision: 20211104
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1007/s12223-021-00868-y
    • الرقم المعرف:
      33864608