Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Hydrological droughts in the southern Andes (40-45°S) from an ensemble experiment using CMIP5 and CMIP6 models.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Aguayo R;Aguayo R; León-Muñoz J; León-Muñoz J; León-Muñoz J; Garreaud R; Garreaud R; Garreaud R; Montecinos A; Montecinos A; Montecinos A
- المصدر:
Scientific reports [Sci Rep] 2021 Mar 09; Vol. 11 (1), pp. 5530. Date of Electronic Publication: 2021 Mar 09.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- نبذة مختصرة : The decrease in freshwater input to the coastal system of the Southern Andes (40-45°S) during the last decades has altered the physicochemical characteristics of the coastal water column, causing significant environmental, social and economic consequences. Considering these impacts, the objectives were to analyze historical severe droughts and their climate drivers, and to evaluate the hydrological impacts of climate change in the intermediate future (2040-2070). Hydrological modelling was performed in the Puelo River basin (41°S) using the Water Evaluation and Planning (WEAP) model. The hydrological response and its uncertainty were compared using different combinations of CMIP projects (n = 2), climate models (n = 5), scenarios (n = 3) and univariate statistical downscaling methods (n = 3). The 90 scenarios projected increases in the duration, hydrological deficit and frequency of severe droughts of varying duration (1 to 6 months). The three downscaling methodologies converged to similar results, with no significant differences between them. In contrast, the hydroclimatic projections obtained with the CMIP6 and CMIP5 models found significant climatic (greater trends in summer and autumn) and hydrological (longer droughts) differences. It is recommended that future climate impact assessments adapt the new simulations as more CMIP6 models become available.
- References: Cook, B. I. et al. Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Futur. 8, (2020).
Bozkurt, D., Rojas, M., Boisier, J. P. & Valdivieso, J. Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Clim. Change 150, 131–147 (2018). (PMID: 10.1007/s10584-018-2246-7)
Boisier, J. P. et al. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem. Sci. Anth. 6, 74 (2018). (PMID: 10.1525/elementa.328)
Feron, S. et al. Observations and projections of heat waves in South America. Sci. Rep. 9, 8173 (2019). (PMID: 31160642654765010.1038/s41598-019-44614-4)
Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017). (PMID: 10.5194/hess-21-6307-2017)
Urrutia-Jalabert, R., González, M. E., González-Reyes, Á., Lara, A. & Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 9, e02171 (2018). (PMID: 10.1002/ecs2.2171)
Cordero, R. R. et al. Dry-season snow cover losses in the Andes (18°–40°S) driven by changes in large-scale climate modes. Sci. Rep. 9, 1–10 (2019). (PMID: 10.1038/s41598-019-53486-7)
Masotti, I. et al. The influence of river discharge on nutrient export and phytoplankton biomass off the central Chile Coast (33°–37°S): seasonal cycle and interannual variability. Front. Mar. Sci. 5, 423 (2018). (PMID: 10.3389/fmars.2018.00423)
Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to southern annular mode trends. J. Clim. 19, 2896–2905 (2006). (PMID: 10.1175/JCLI3774.1)
Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos. 118, 5029–5060 (2013). (PMID: 10.1002/jgrd.50316)
Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012). (PMID: 10.1038/ngeo1613)
Pabón-Caicedo, J. D. et al. Observed and projected hydroclimate changes in the Andes. Front. Earth Sci. 8, 61 (2020). (PMID: 10.3389/feart.2020.00061)
Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl. Acad. Sci. USA 117, 16816–16823 (2020). (PMID: 3263200310.1073/pnas.20024111177382209)
Garreaud, R. Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Clim. Res. 74, 217–229 (2018). (PMID: 10.3354/cr01505)
Saldías, G. S., Sobarzo, M. & Quiñones, R. Freshwater structure and its seasonal variability off western Patagonia. Prog. Oceanogr. 174, 143–153 (2019). (PMID: 10.1016/j.pocean.2018.10.014)
Jacob, B. G. et al. Springtime size-fractionated primary production across hydrographic and PAR-light gradients in Chilean Patagonia (41–50°S). Prog. Oceanogr. 129, 75–84 (2014). (PMID: 10.1016/j.pocean.2014.08.003)
Torres, R., Silva, N., Reid, B. & Frangopulos, M. Silicic acid enrichment of subantarctic surface water from continental inputs along the Patagonian archipelago interior sea (41–56°S). Prog. Oceanogr. 129, 50–61 (2014). (PMID: 10.1016/j.pocean.2014.09.008)
González, H. E. et al. Land-ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47–50°S). Prog. Oceanogr. 119, 32–47 (2013). (PMID: 10.1016/j.pocean.2013.06.003)
Iriarte, J. L., León-Muñoz, J., Marcé, R., Clément, A. & Lara, C. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. N.Z. J. Mar. Freshw. Res. 51, 304–315 (2017). (PMID: 10.1080/00288330.2016.1220955)
Cuevas, L. A. et al. Interplay between freshwater discharge and oceanic waters modulates phytoplankton size-structure in fjords and channel systems of the Chilean Patagonia. Prog. Oceanogr. 173, 103–113 (2019). (PMID: 10.1016/j.pocean.2019.02.012)
León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330 (2018). (PMID: 29358586577799910.1038/s41598-018-19461-4)
Soto, D. et al. Salmon farming vulnerability to climate change in southern Chile: Understanding the biophysical, socioeconomic and governance links. Rev. Aquac. 11, 354–374 (2019). (PMID: 10.1111/raq.12336)
Bracegirdle, T. J. et al. Improvements in circumpolar Southern hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5. Earth Sp. Sci. 7, e2019EA001065 (2020).
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020). (PMID: 10.1029/2019GL085782)
Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005). (PMID: 1629230110.1038/nature04141)
Aguayo, R. et al. The glass half-empty: Climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia. Clim. Change 155, 417–435 (2019). (PMID: 10.1007/s10584-019-02495-6)
Viale, M. & Garreaud, R. Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J. Geophys. Res. Atmos. 120, 4962–4974 (2015). (PMID: 10.1002/2014JD023014)
Masiokas, M. H. et al. Streamflow variations across the Andes (18°–55°S) during the instrumental era. Sci. Rep. 9, 17879 (2019). (PMID: 31784550688464010.1038/s41598-019-53981-x)
Montecinos, A. & Aceituno, P. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Clim. 16, 281–296 (2003). (PMID: 10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2)
Gillett, N. P., Kell, T. D. & Jones, P. D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 33, L23704 (2006). (PMID: 10.1029/2006GL027721)
León-Muñoz, J., Marcé, R. & Iriarte, J. L. Influence of hydrological regime of an Andean river on salinity, temperature and oxygen in a Patagonia fjord, Chile. N. Z. J. Mar. Freshw. Res. 47, 515–528 (2013). (PMID: 10.1080/00288330.2013.802700)
Lara, A., Villalba, R. & Urrutia, R. A 400-year tree-ring record of the Puelo River summer-fall streamflow in the Valdivian Rainforest eco-region, Chile. Clim. Change 86, 331–356 (2008). (PMID: 10.1007/s10584-007-9287-7)
Pasquini, A. I., Lecomte, K. L. & Depetris, P. J. The Manso Glacier drainage system in the northern Patagonian Andes: An overview of its main hydrological characteristics. Hydrol. Process. 27, 217–224 (2013). (PMID: 10.1002/hyp.9219)
Masiokas, M. H., Luckman, B. H., Villalba, R., Ripalta, A. & Rabassa, J. Little ice age fluctuations of Glaciar Río Manso in the north Patagonian Andes of Argentina. Quat. Res. 73, 96–106 (2010). (PMID: 10.1016/j.yqres.2009.08.004)
Wilby, R. L. et al. The ‘dirty dozen’ of freshwater science: detecting then reconciling hydrological data biases and errors. Wiley Interdiscip. Rev. Water 4, e1209 (2017). (PMID: 10.1002/wat2.1209)
Fuentes, R., León-Muñoz, J. & Echeverría, C. Spatially explicit modelling of the impacts of land-use and land-cover change on nutrient inputs to an oligotrophic lake. Int. J. Remote Sens. 38, 7531–7550 (2017). (PMID: 10.1080/01431161.2017.1339928)
Yates, D., Sieber, J., Purkey, D. & Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model. Water Int. 30, 487–500 (2005). (PMID: 10.1080/02508060508691893)
Krogh, S. A., Pomeroy, J. W. & McPhee, J. Physically based mountain hydrological modeling using reanalysis data in Patagonia. J. Hydrometeorol. 16, 172–193 (2014). (PMID: 10.1175/JHM-D-13-0178.1)
Shukla, S. & Wood, A. W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 35, L02405 (2008). (PMID: 10.1029/2007GL032487)
Dahlstrom, D. J. Calibration and uncertainty analysis for complex environmental models. Groundwater 53, 673–674 (2015). (PMID: 10.1111/gwat.12360)
Fowler, K., Peel, M., Western, A. & Zhang, L. Improved rainfall-runoff calibration for drying climate: Choice of objective function. Water Resour. Res. 54, 3392–3408 (2018). (PMID: 10.1029/2017WR022466)
Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: A cross-scale study. Environ. Res. Lett. 13, 015006 (2018). (PMID: 10.1088/1748-9326/aa9938)
Wang, H., Chen, J., Xu, C., Zhang, J. & Chen, H. A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change. Earth’s Future 8, e2020EF001602 (2020). (PMID: 10.1029/2020EF001602)
Bozkurt, D. et al. Dynamical downscaling over the complex terrain of southwest South America: Present climate conditions and added value analysis. Clim. Dyn. 53, 6745–6767 (2019). (PMID: 10.1007/s00382-019-04959-y)
Rivera, J. A. & Arnould, G. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 241, 104953 (2020). (PMID: 10.1016/j.atmosres.2020.104953)
Cannon, A. J., Piani, C. & Sippel, S. Bias correction of climate model output for impact models. In Climate Extremes and Their Implications for Impact and Risk Assessment 77–104 (Elsevier, Amsterdam, 2020). (PMID: 10.1016/B978-0-12-814895-2.00005-7)
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?. J. Clim. 28, 6938–6959 (2015). (PMID: 10.1175/JCLI-D-14-00754.1)
Leander, R. & Buishand, T. A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 332, 487–496 (2007). (PMID: 10.1016/j.jhydrol.2006.08.006)
Iturbide, M. et al. The R-based climate4R open framework for reproducible climate data access and post-processing. Environ. Model. Softw. 111, 42–54 (2019). (PMID: 10.1016/j.envsoft.2018.09.009)
Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 10, 1163–1174 (1996). (PMID: 10.1046/j.1523-1739.1996.10041163.x)
Cortés, G., Vargas, X. & McPhee, J. Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. J. Hydrol. 405, 93–109 (2011). (PMID: 10.1016/j.jhydrol.2011.05.013)
Gustard, A. & Siegfried, D. Manual on Low-flow Estimation and Prediction. (Operational Hydrology Report No. 50, WMO-No. 1029, 2009).
DGA. Aplicación de la metodología de actualización del Balance Hídrico Nacional en las cuencas de las Macrozonas Norte, Centro, Sur y parte norte de la Macrozona Austral. https://snia.mop.gob.cl/sad/REH5878v1.pdf (2020).
Cai, W., Cowan, T. & Thatcher, M. Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion. Sci. Rep. 2, 1–5 (2012). (PMID: 10.1038/srep00702)
Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016). (PMID: 10.1038/nclimate3103)
Olivares-Contreras, V. A., Mattar, C., Gutiérrez, A. G. & Jiménez, J. C. Warming trends in Patagonian subantartic forest. Int. J. Appl. Earth Obs. Geoinf. 76, 51–65 (2019).
Pérez, T., Mattar, C. & Fuster, R. Decrease in snow cover over the Aysén river catchment in Patagonia, Chile. Water (Switzerland) 10, 1–16 (2018).
Demaria, E. M. C., Maurer, E. P., Thrasher, B., Vicuña, S. & Meza, F. J. Climate change impacts on an alpine watershed in Chile: Do new model projections change the story?. J. Hydrol. 502, 128–138 (2013). (PMID: 10.1016/j.jhydrol.2013.08.027)
Vicuña, S., Garreaud, R. D. & McPhee, J. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Clim. Change 105, 469–488 (2011). (PMID: 10.1007/s10584-010-9888-4)
Damiani, A. et al. Connection between Antarctic ozone and climate: interannual precipitation changes in the Southern Hemisphere. Atmosphere 11, 579 (2020). (PMID: 10.3390/atmos11060579)
Barnes, E. A., Barnes, N. W. & Polvani, L. M. Delayed southern hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Clim. 27, 852–867 (2014). (PMID: 10.1175/JCLI-D-13-00246.1)
Barria, P., Peel, M., Walsh, K. & Garreaud, R. Analysis of within and between-GCM uncertainties of runoff projections in Mediterranean-like catchments. J. South. Hemisph. Earth Syst. Sci. 67, 181–213 (2017).
Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Clim. 33, 1299–1315 (2020). (PMID: 10.1175/JCLI-D-19-0332.1)
Ayers, J., Ficklin, D. L., Stewart, I. T. & Strunk, M. Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. Int. J. Climatol. 36, 3807–3818 (2016). (PMID: 10.1002/joc.4594)
Schnorbus, M. A. & Cannon, A. J. Statistical emulation of streamflow projections from a distributed hydrological model: Application to CMIP3 and CMIP5 climate projections for British Columbia, Canada. Water Resour. Res. 50, 8907–8926 (2014). (PMID: 10.1002/2014WR015279)
Jun, M., Knutti, R. & Nychka, D. W. Spatial analysis to quantify numerical model bias and dependence. J. Am. Stat. Assoc. 103, 934–947 (2008). (PMID: 10.1198/016214507000001265)
Maurer, E. P. & Pierce, D. W. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci. 18, 915–925 (2014). (PMID: 10.5194/hess-18-915-2014)
Vargas, C. A. et al. Environmental costs of water transfers. Nat. Sustain. 2008, 3–4 (2020).
Dariane, A. B., Khoramian, A. & Santi, E. Investigating spatiotemporal snow cover variability via cloud-free MODIS snow cover product in Central Alborz Region. Remote Sens. Environ. 202, 152–165 (2017). (PMID: 10.1016/j.rse.2017.05.042)
Stehr, A., Debels, P., Arumi, J. L., Alcayaga, H. & Romero, F. Modelación de la respuesta hidrológica al cambio climático: Experiencias de dos cuencas de la zona centro-sur de Chile. Tecnol. Cienc. Agua 1, 37–58 (2010).
McPhee, J. et al. An approach to estimating hydropower impacts of climate change from a regional perspective. In Watershed Management 2010 : Innovations in Watershed Management under Land Use and Climate Change 248–257 (2010).
Vicuña, S., McPhee, J. & Garreaud, R. D. Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J. Water Resour. Plan. Manag. 138, 431–441 (2012). (PMID: 10.1061/(ASCE)WR.1943-5452.0000202)
Meza, F. J., Vicuña, S., Jelinek, M., Bustos, E. & Bonelli, S. Assessing water demands and coverage sensitivity to climate change in the urban and rural sectors in central Chile. J. Water Clim. Chang. 5, 192–203 (2014). (PMID: 10.2166/wcc.2014.019)
McNamara, I., Nauditt, A., Zambrano-Bigiarini, M., Ribbe, L. & Hann, H. Modelling water resources for planning irrigation development in drought-prone southern Chile. Int. J. Water Resour. Dev. 00, 1–26 (2020). - الموضوع: Date Created: 20210322 Date Completed: 20211122 Latest Revision: 20230129
- الموضوع: 20240829
- الرقم المعرف: PMC7943561
- الرقم المعرف: 10.1038/s41598-021-84807-4
- الرقم المعرف: 33750825
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.